Analysis of microswimmers: from one to many

Laurel Ohm

University of Wisconsin - Madison

Symposium on computational math for engineering and sciences Penn State

November 14, 2023

[Peng-Liu-Cheng 2021]

I. Single swimmer
 Undulatory swimming via resistive force theory

Classical elastohydrodynamics

Immersed, inextensible elastic filament $\boldsymbol{X}:[0, L] \times[0, T] \rightarrow \mathbb{R}^{3}$:

1. Resistive force theory:

$$
\begin{array}{r}
\frac{\partial \boldsymbol{X}}{\partial t}(s, t)=-c_{\mathrm{h}}\left(\mathbf{I}+\boldsymbol{X}_{s} \boldsymbol{X}_{s}^{\mathrm{T}}\right) \mathbf{f}_{\mathrm{h}}(s, t) \\
c_{\mathrm{h}}=\frac{|\log (\epsilon / L)| \mid}{4 \pi}
\end{array}
$$

2. Euler-Bernoulli beam theory:
$\mathbf{f}_{\mathrm{h}}(s, t)=\left(E\left(\boldsymbol{X}_{s s s}-\left(\kappa_{0}\right)_{s} \boldsymbol{e}_{\mathrm{n}}\right)-\tau \boldsymbol{X}_{s}\right)_{s}, \quad\left|\boldsymbol{X}_{s}\right|^{2}=1$
Here $\kappa_{0}(s, t)$: simple representation of internal mechanics (see [Fauci-Peskin 1988, Camalet-Jülicher 2000, Thomases-Guy 2017])
3. Force-free and torque-free:

$$
\int_{0}^{L} \mathbf{f}_{\mathrm{h}}(s, t)=0, \quad \int_{0}^{L} \boldsymbol{X}(s, t) \times \mathbf{f}_{\mathrm{h}}(s, t)=0
$$

Classical elastohydrodynamics

Together (rescaling time as $\frac{E c_{h}}{L^{4}} t$):

$$
\begin{aligned}
\frac{\partial \boldsymbol{X}}{\partial t}(s, t) & =-\left(\mathbf{I}+\boldsymbol{X}_{s} \boldsymbol{X}_{s}^{\mathrm{T}}\right)\left(\boldsymbol{X}_{s s s}-\left(\kappa_{0}\right)_{s} \boldsymbol{e}_{\mathrm{n}}-\tau(s, t) \boldsymbol{X}_{s}\right)_{s} \\
\left|\boldsymbol{X}_{s}\right|^{2} & =1 \\
\left.\left(\boldsymbol{X}_{s s}-\kappa_{0} \boldsymbol{e}_{\mathrm{n}}\right)\right|_{s=0,1} & =0,\left.\quad\left(\boldsymbol{X}_{s s s}-\left(\kappa_{0}\right)_{s} \boldsymbol{e}_{\mathrm{n}}-\tau \boldsymbol{X}_{s}\right)\right|_{s=0,1}=0
\end{aligned}
$$

When κ_{0} is time-independent, evolution seeks to minimize bending energy:

$$
\begin{aligned}
\frac{1}{2} \frac{d}{d t} \int_{0}^{1}\left(\kappa-\kappa_{0}\right)^{2} d s=- & \int_{0}^{1}\left(\left(\kappa-\kappa_{0}\right)_{s s}-\kappa^{3}-\tau \kappa\right)^{2} d s \\
& -2 \int_{0}^{1}\left(3 \kappa \kappa_{s}-\kappa\left(\kappa_{0}\right)_{s}+\tau_{s}\right)^{2} d s<0
\end{aligned}
$$

(where $\kappa=\boldsymbol{X}_{\text {ss }} \cdot \boldsymbol{e}_{\mathrm{n}}$)

Goal: Given a time-dependent preferred curvature κ_{0}, study the PDE evolution, particularly the inextensibility constraint. Prove conditions on κ_{0} allowing the filament to swim, and test predictions numerically.

Classical elastohydrodynamics

Tangent angle formulation:

$$
\begin{aligned}
\dot{\theta} & =-\theta_{s s s s}+\left(\kappa_{0}\right)_{s s s}+\mathcal{N}\left[\theta_{s}, \kappa_{0}\right] \\
\tau_{s s} & =\frac{1}{2} \theta_{s}^{2} \tau+\mathcal{T}\left[\theta_{s}, \kappa_{0}\right]
\end{aligned}
$$

Curvature formulation: $\left(\kappa=\theta_{s}, \bar{\kappa}=\kappa-\kappa_{0}, \bar{\tau}=\tau+\kappa_{0}^{2}\right)$:

$$
\begin{aligned}
\dot{\bar{\kappa}} & =-\bar{\kappa}_{s s s s}-\dot{\kappa}_{0}+\left(\mathcal{N}\left[\bar{\kappa}, \kappa_{0}\right]\right)_{s} \\
\bar{\tau}_{s s} & =\frac{1}{2}\left(\bar{\kappa}+\kappa_{0}\right)^{2} \bar{\tau}+\mathcal{T}\left[\bar{\kappa}, \kappa_{0}\right] \\
\left.\bar{\kappa}\right|_{s=0,1} & =\left.\bar{\kappa}_{s}\right|_{s=0,1}=\left.\bar{\tau}\right|_{s=0,1}=0
\end{aligned}
$$

$$
\begin{aligned}
\mathcal{N}\left[\bar{\kappa}, \kappa_{0}\right] & :=9 \bar{\kappa}\left(\bar{\kappa}+2 \kappa_{0}\right) \bar{\kappa}_{S}+8 \kappa_{0}^{2} \bar{\kappa}_{S}+7 \bar{\kappa}^{2}\left(\kappa_{0}\right)_{s}+8 \bar{\kappa}_{\kappa_{0}}\left(\kappa_{0}\right)_{s}+3 \bar{\tau}_{s}\left(\bar{\kappa}+\kappa_{0}\right)+\bar{\tau}\left(\bar{\kappa}+\kappa_{0}\right)_{s} \\
2 \mathcal{T}\left[\bar{\kappa}, \kappa_{0}\right] & :=\bar{\kappa}\left(\bar{\kappa}+\kappa_{0}\right)^{2}\left(\bar{\kappa}+2 \kappa_{0}\right)+\left(\bar{\kappa}+\kappa_{0}\right)_{s} \bar{\kappa}_{S}-2\left(\bar{\kappa}\left(\bar{\kappa}+2 \kappa_{0}\right)\right)_{s s}-3\left(\bar{\kappa}_{S}\left(\bar{\kappa}+\kappa_{0}\right)\right)_{s}
\end{aligned}
$$

Well-posedness

Consider: $\partial_{s s s} \psi,\left.\quad \psi\right|_{s=0,1}=\left.\psi_{s}\right|_{s=0,1}=0$
Eigenvalues: $\lambda_{k}=\xi_{k}^{4}$ where $\cos \left(\xi_{k}\right) \cosh \left(\xi_{k}\right)=1, \xi_{0}=0$
Eigenfunctions: $\psi_{k}=A_{k}\left(\cos \left(\xi_{k} s\right)-\cosh \left(\xi_{k} s\right)\right)+B_{k}\left(\sin \left(\xi_{k} s\right)-\sinh \left(\xi_{k} s\right)\right)$
Theorem (Well-posedness [Mori-O. Nonlin. 2023])
Given a sufficiently small $\kappa_{0} \in C^{1}\left([0, T] ; H^{1}\right)$,

1. There is a time $T^{*}\left(\bar{\kappa}^{\text {in }}\right)$ s.t. a unique solution $\bar{\kappa}$ exists up to time T^{*}.
2. If $\left\|\bar{\kappa}^{\text {in }}\right\|_{L^{2}}$ is sufficiently small, for any $T>0$, a unique solution $\bar{\kappa}$ exists and satisfies

$$
\begin{aligned}
& \sup _{t \in[0, T]}\left(\|\bar{\kappa}\|_{L^{2}}+\min \left\{t^{1 / 4}, 1\right\}\|\bar{\kappa}\|_{\dot{H}^{1}}\right) \leq c\left(\left\|\kappa^{\mathrm{in}}\right\|_{L^{2}}+\left\|\kappa_{0}\right\|_{H^{1}}+\left\|\dot{\kappa}_{0}\right\|_{L^{2}}\right) . \\
& \text { If } \kappa_{0} \equiv 0, \\
& \|\kappa\|_{L^{2}}+\min \left\{t^{1 / 4}, 1\right\}\|\kappa\|_{\dot{H}^{1}} \leq c e^{-t \lambda_{1}}\left\|\kappa^{\mathrm{in}}\right\|_{L^{2}} .
\end{aligned}
$$

Swimming

Theorem (Swimming [Mori-O. Nonlin. 2023])
Suppose that $\kappa_{0}(s, t) \in C^{1}\left([0, T] ; H^{3}\right)$ is T-periodic in time and sufficiently small. The filament swims with speed

$$
U(t)=-\int_{0}^{1}\left(\kappa_{0}\right)_{s}\left(\kappa-\kappa_{0}\right) d s+O\left(\left\|\kappa_{0}\right\|^{3}\right) .
$$

Writing $\kappa_{0}(s, t)=\sum_{m, k=1}^{\infty}\left(a_{m, k} \cos (\omega m t)-b_{m, k} \sin (\omega m t)\right) \psi_{k}(s), \omega=\frac{2 \pi}{T}$:

$$
\begin{aligned}
& \frac{1}{T} \int_{0}^{T} U d t=\frac{1}{2} \sum_{m, k, \ell=1}^{\infty} \frac{\omega^{2} m^{2}}{\omega^{2} m^{2}+\lambda_{k}^{2}}\left(\frac{\lambda_{k}}{\omega m}\left(a_{m, k} b_{m, \ell}-b_{m, k} a_{m, \ell}\right)\right. \\
& \left.\quad+a_{m, k} a_{m, \ell}+b_{m, k} b_{m, \ell}\right) \int_{0}^{1} \psi_{k}\left(\psi_{\ell}\right)_{s} d s+O\left(\left\|\kappa_{0}\right\|^{3}\right)
\end{aligned}
$$

- Swimming speed scales like $\left\|\kappa_{0}\right\|^{2}$ ([Taylor 1951]: square of amplitude)
- Valid at finite bending stiffness:
$t=E t^{\prime} \Longrightarrow U\left(t^{\prime}\right)=-E \int_{0}^{1}\left(\kappa_{0}\right)_{s}\left(\kappa-\kappa_{0}\right) d s$

Consider forcing at lowest nonzero temporal frequency only:

$$
\kappa_{0}(s, t)=F_{1}(s) \cos (\omega t)+F_{2}(s) \sin (\omega t)
$$

Then (leading order) swimming speed is

$$
\frac{1}{2} \sum_{k, \ell=1}^{\infty} \frac{\omega^{2}}{\omega^{2}+\lambda_{k}^{2}}\left(\frac{\lambda_{k}}{\omega}\left(a_{k} b_{\ell}-b_{k} a_{\ell}\right)+a_{k} a_{\ell}+b_{k} b_{\ell}\right) \int_{0}^{1} \psi_{k}\left(\psi_{\ell}\right)_{s} d s
$$

"Scallop Theorem" for elastic swimmers: (Conditions on κ_{0}, not actual motion)

1. If F_{1} and F_{2} are both even or both odd about $s=\frac{1}{2}$, the integral $\int_{0}^{1} \psi_{k}\left(\psi_{\ell}\right)_{s} d s$ vanishes and the filament does not swim.
2. If $F_{1}=0, F_{2}=0$, or $F_{1}= \pm F_{2}$, then the first term vanishes. The filament may still swim, but its displacement will be very small, due to the size of λ_{k}.

Note that a traveling wave κ_{0} avoids both (1) and (2).

Optimization

What is the optimal κ_{0} for swimming?
Given $\kappa_{0}=\sum_{k=1}^{\infty}\left(a_{k} \cos (\omega t)-b_{k} \sin (\omega t)\right) \psi_{k}(s)$, consider average work:

$$
\frac{1}{T} \int_{0}^{T} W d t:=\frac{1}{T} \int_{0}^{T} \int_{0}^{1} \dot{\kappa}_{0}\left(\kappa-\kappa_{0}\right) d s d t \approx \sum_{k=1}^{\infty} \frac{\lambda_{k}}{2} \frac{\omega^{2}}{\omega^{2}+\lambda_{k}^{2}}\left(a_{m, k}^{2}+b_{m, k}^{2}\right)
$$

Define $U_{k_{\max }}, W_{k_{\max }}$ to be swimming speed and work using first $k_{\text {max }}$ modes. Solve:

Solution:

$$
\min _{a_{k}, b_{k}} U_{k_{\max }}
$$

$$
\text { subject to } \quad W_{k_{\max }}=1, \quad \sum_{k} a_{k}^{2}=\sum_{k} b_{k}^{2}=1 .
$$

Will compare to classic traveling wave $F_{1}=\sin (\omega s)$ and $F_{2}=\cos (\omega s)$

Numerical method: back to dynamics

Inspired by [Moreau et al. 2018, Maxian et al. 2021], rather than solve BVP for τ, enforce inextensibility directly in parameterization:

$$
\boldsymbol{X}(s, t)=\boldsymbol{X}_{0}(t)+\int_{0}^{s} \boldsymbol{X}_{s}\left(s^{\prime}, t\right) d s^{\prime}, \quad \boldsymbol{X}_{s}=\boldsymbol{e}_{\mathrm{t}}=\binom{\cos \theta}{\sin \theta} .
$$

Recast evolution:

$$
\boldsymbol{e}_{\mathrm{n}}(s, t) \cdot \int_{0}^{s} \boldsymbol{f}\left(s^{\prime}, t\right) d s^{\prime}=-\theta_{s s}+\left(\kappa_{0}\right)_{s}
$$

where $\boldsymbol{f}(s, t)=\left(\mathbf{I}+\boldsymbol{e}_{\mathrm{t}} \boldsymbol{e}_{\mathrm{t}}^{\mathrm{T}}\right)^{-1} \frac{\partial \boldsymbol{X}}{\partial t}=\left(\mathbf{I}-\frac{1}{2} \boldsymbol{e}_{\mathrm{t}} \boldsymbol{e}_{\mathrm{t}}^{\mathrm{T}}\right)\left(\dot{\boldsymbol{X}}_{0}+\int_{0}^{s} \dot{\boldsymbol{e}}_{\mathrm{t}}\left(s^{\prime}\right) d s^{\prime}\right)$.
Accompany with $\int_{0}^{1} \boldsymbol{f}(s, t) d s=0$ to enforce $\left.\left(-\theta_{s s}+\left(\kappa_{0}\right)_{s}\right)\right|_{s=1}=0$.
Discretize fiber into N segments and enforce at midpoints:

Have $N+2$ equations for $N+2$ unknowns: \boldsymbol{X}_{0} and $\theta_{j}, j=1, \ldots, N$.

Numerical results

Non-swimmer
Bad swimmer

Where is this heading?

- Resistive force theory dynamics as limit of PDE in the bulk We have achieved this for nonlocal slender body theory in the static setting in [Mori-O.-Spirn CPAM 2020, Mori-O.-Spirn ARMA 2020, Mori-O. SAPM 2021, etc.]
Progress in dynamic setting in [O. 2023]
- What is the best way to implement an inextensibility constraint? Quantify the differences between projection methods versus direct discretization of curve evolution via numerical analysis
- Swimming questions

PDE-constrained optimization of preferred curvature for swimming; resistive force theories in viscoelastic media [Ohm 2022]; preferred curvature as limit of micromechanical description of filament motion

II. Many swimmers

Collective behavior via kinetic theory

Active suspensions and bacterial turbulence

[Peng-Liu-Cheng 2021]

Motion of a rod-like swimmer

Each swimmer is approximated by a force dipole:

The flow field around a single swimmer is approximately

$$
-\mu \Delta \boldsymbol{u}+\nabla q= \pm \frac{F \ell}{2} \underbrace{\left(\boldsymbol{p} \cdot \nabla_{x}\right) \delta(\boldsymbol{x}) \boldsymbol{p}}_{=\operatorname{div}_{x}(\boldsymbol{p} \otimes \boldsymbol{p} \delta(x))}, \quad \operatorname{div} \boldsymbol{u}=0
$$

Rod-like particles swim with speed V_{0} and are transported:

$$
\dot{\boldsymbol{x}}=V_{0} \boldsymbol{p}+\boldsymbol{u}, \quad \dot{\boldsymbol{p}}=(\mathbf{I}-\boldsymbol{p} \otimes \boldsymbol{p})(\nabla \boldsymbol{u} \boldsymbol{p}) .
$$

$$
\begin{aligned}
\partial_{t} \psi+\nabla_{x} \cdot(\dot{\boldsymbol{x}} \psi)+\nabla_{p} \cdot(\dot{\boldsymbol{p}} \psi) & =\kappa \Delta_{x} \psi+\nu \Delta_{p} \psi \\
\dot{\boldsymbol{x}} & =\boldsymbol{p}+\boldsymbol{u} \\
\dot{\boldsymbol{p}} & =(\mathbf{I}-\boldsymbol{p} \otimes \boldsymbol{p})(\nabla \boldsymbol{u} \boldsymbol{p}) \\
-\Delta \boldsymbol{u}+\nabla \boldsymbol{q} & =\nabla_{x} \cdot \boldsymbol{\Sigma}, \quad \operatorname{div} \boldsymbol{u}=0 \\
\boldsymbol{\Sigma}(\boldsymbol{x}, t) & =\iota \int_{S^{d-1}} \boldsymbol{p} \otimes \boldsymbol{p} \psi(\boldsymbol{x}, \boldsymbol{p}, t) d \boldsymbol{p}, \quad \iota \in\{ \pm\}
\end{aligned}
$$

$\psi(\boldsymbol{x}, \boldsymbol{p}, t): \#$ of swimmers at $\boldsymbol{x} \in \mathbb{T}^{d}$ with orientation $\boldsymbol{p} \in S^{d-1}$ $\boldsymbol{u}(x, t), q(x, t)$: fluid velocity \& pressure $\Sigma(x, t)$: signed active stress (+ pullers, - pushers)
ν, κ : (nondimensional) diffusion coefficients
$\bar{\psi}$: (nondimensional) number density of swimmers $\left(\bar{\psi}=\frac{F L n}{2 \pi \mu V_{0}}\right)$

Stability of the uniform isotropic equilibrium

What do we know?

Linear stability analysis shows unstable eigenvalue(s) for large $\bar{\psi}$ in pusher suspensions ($\iota=-$). In 2D, consider

$$
\psi=h(\boldsymbol{k}, \boldsymbol{p}) \mathrm{e}^{i \boldsymbol{k} \cdot \boldsymbol{x}+\sigma t}, \sigma \in \mathbb{C}, \quad \boldsymbol{p}=\cos \theta \boldsymbol{e}_{x}+\sin \theta \boldsymbol{e}_{y}
$$

If $\nu=0$, growth rate σ satisfies (note: $\beta \sim 1 / \bar{\psi}$)

$$
\int_{0}^{2 \pi} \frac{\cos ^{2} \theta \sin ^{2} \theta}{\sigma+\kappa k^{2}+i k \beta \cos \theta} d \theta=\pi
$$

Solve for σ numerically:

Pusher instability: 2D patterns

Pusher instability: 2D patterns

What about stability?

Without swimming, the uniform isotropic pusher equilibrium $\psi=\bar{\psi}$ is always unstable (for $\nu, \kappa \ll 1$).

How does swimming stabilize the uniform isotropic steady state $\psi \equiv \bar{\psi}$?

This kinetic model shares similarities with more standard kinetic theories for many-particle systems (Vlasov-Poisson, Boltzmann, etc.)

Can adapt the tools and language for studying stability in these more standard settings to answer this question.

$$
\begin{aligned}
\partial_{t} \psi+\boldsymbol{p} \cdot \nabla_{x} \psi & +\boldsymbol{u} \cdot \nabla_{x} \psi+\nabla_{p} \cdot[(\mathbf{I}-\boldsymbol{p} \otimes \boldsymbol{p})(\nabla \boldsymbol{u} \boldsymbol{p}) \psi] \\
& =\nu \Delta_{p} \psi+\kappa \Delta_{x} \psi \\
-\Delta \boldsymbol{u}+\nabla^{q} & =\nabla_{\times} \cdot \boldsymbol{\Sigma}, \quad \operatorname{div} \boldsymbol{u}=0 \\
\boldsymbol{\Sigma}(\boldsymbol{x}, t) & =\iota \int_{S^{d-1}} \boldsymbol{p} \otimes \boldsymbol{p} \psi(\boldsymbol{x}, \boldsymbol{p}, t) d \boldsymbol{p}, \quad \iota \in\{ \pm\}
\end{aligned}
$$

We quantify three stabilizing effects of swimming:

1. Landau damping: Decay of solutions to the linearized "inviscid" ($\nu=\kappa=0$) equations on $\mathbb{T}^{d}, d=2,3$
2. Taylor dispersion: On \mathbb{R}^{3}, nonlinear stability of $\bar{\psi}=0$ due to dispersive effect of $\boldsymbol{p} \cdot \nabla_{x}-\nu \Delta_{\rho}$
3. Enhanced dissipation: Nonlinear stability of $\psi=\bar{\psi}$ (small) on \mathbb{T}^{d} with convergence to $\langle\psi\rangle(\boldsymbol{p}, t):=\int \psi(\boldsymbol{x}, \boldsymbol{p}, t) d x$ in time $O\left(\nu^{-\frac{1}{2}}\right)$

Phase mixing

In (linearized) inviscid setting $(\nu=\kappa=0)$, stability for $\psi=\bar{\psi}$ on \mathbb{T}^{d} is due to orientation mixing from swimming

Familiar example: phase mixing in transport equation, $f=f(x, v, t)$:

$$
\frac{\partial f}{\partial t}+v \cdot \nabla_{x} f=0, \quad x, v \in \mathbb{T}^{d} \times \mathbb{R}^{d}
$$

[Villani 2010]
On Fourier side: $\quad \frac{\partial \widehat{f}}{\partial t}-k \cdot \nabla_{\eta} \widehat{f}=0$; i.e. $\widehat{f}(t, k, \eta)=\widehat{f} \mathrm{In}(k, \eta+k t)$
If $f^{\text {in }} \in W_{v}^{\ell, 1}: \quad|\widehat{f}(t, k, \eta)|=\left|\widehat{f^{\mathrm{n}}}(k, \eta+k t)\right| \leq C|\eta+k t|^{-\ell} \rightarrow 0, \quad k \neq 0$

Orientation mixing

Swimming has similar effect:

- For each $\boldsymbol{k} \neq 0$, solution is transferred to higher modes in \boldsymbol{p} over time (weak convergence to zero via oscillations in p)
- Concentration $c(\boldsymbol{x}, t)=\int_{S^{d-1}} \psi(\boldsymbol{x}, \boldsymbol{p}, t) d \boldsymbol{p}$ converges to mean; $\boldsymbol{k}=0$ unchanged

Orientation mixing

Linearized equation in inviscid setting ($\nu=\kappa=0$):

$$
\partial_{t} f+\boldsymbol{p} \cdot \nabla_{x} f-d \bar{\psi} \nabla \boldsymbol{u}: \boldsymbol{p} \otimes \boldsymbol{p}=0
$$

Kinetic free swimming: $\bar{\psi}=0$. Write $f=h e^{i k \cdot x}:\left(\right.$ take $\left.k=k e_{1}, t \mapsto t / k\right)$

$$
\partial_{t} h+i p_{1} h=0, \quad h(\cdot, 0)=h^{\text {in }} .
$$

Writing $p_{1}=\cos \theta$, oscillations grow over time except where $\partial_{\theta} p_{1}=0$, which limits decay:

$$
\|h\|_{H^{-(d-1)}} \lesssim\langle t\rangle^{-\frac{d-1}{2}}\left\|h^{\mathrm{in}}\right\|_{H^{d-1}}
$$

Compare to transport equation (Vlasov-Poisson): $v \cdot \nabla_{x}$ gives exponential decay to mean-in- x if $f^{\text {in }}$ is analytic-in- v.

Landau damping

Incorporate nonlocal term $\bar{\psi}>0$. Obtain Volterra equation for $\widehat{\nabla \boldsymbol{u}}$: $\left(\boldsymbol{k}=k \boldsymbol{e}_{1}\right)$

$$
\widehat{\nabla \boldsymbol{u}}[h]=\widehat{\nabla \boldsymbol{u}}\left[e^{-i p_{1} t} h^{\mathrm{in}}\right]-\iota d \bar{\psi} \int_{0}^{t} K(t-s) \widehat{\nabla \boldsymbol{u}}[h](s) d s .
$$

Taking Fourier-Laplace transform L, may (formally) solve:

$$
L \widehat{\nabla \boldsymbol{u}}[h]=(I+\iota d \bar{\psi} L K)^{-1} L \widehat{\nabla \boldsymbol{u}}\left[e^{-i p_{1} t} h^{\mathrm{in}}\right] .
$$

Theorem (Linear Landau damping, Albritton-Ohm SIMA 2023)
Let $f^{\text {in }} \in L_{x}^{2} H_{p}^{d+1}\left(\mathbb{T}^{d} \times S^{d-1}\right)$. Suppose $\iota=+$ or $\bar{\psi}<\bar{\psi}^{*}$. Then $\quad\left(\langle t\rangle=\sqrt{1+t^{2}}\right)$

$$
\int\|\nabla \boldsymbol{u}(\cdot, t)\|_{L_{x}^{2}}^{2}\langle t\rangle^{d-\varepsilon} d t \lesssim_{\bar{\psi}, \varepsilon}\left\|f^{\mathrm{in}}\right\|_{L_{x}^{2} H_{p}^{d+1}}^{2} .
$$

(Sharpened to L^{∞}-in-time bound in [Coti Zelati-Dietert-Gerard Varet 2023])
Stability threshold $\bar{\psi}^{*}$ for pushers $(\iota=-)$ arises as a Penrose condition which is equivalent to no solution with $\operatorname{Re}(\lambda) \geq 0$ to

$$
\iota d \bar{\psi} \int_{S^{d-1}} \frac{p_{1}^{2} p_{j}^{2}}{\lambda+i p_{1}} d \boldsymbol{p}=1
$$

(i.e. the linearized operator has no unstable/marginally stable eigenvalue)

Generalized Taylor dispersion

Now consider $0<\nu, \kappa \ll 1$ and linearized PDE with $\bar{\psi}=0$:

$$
\partial_{t} f+\boldsymbol{p} \cdot \nabla_{x} f=\nu \Delta_{p} f+\kappa \Delta_{x} f
$$

For swimmers with speed U_{0}, predict effective x-diffusion

$$
\left(\kappa+\frac{U_{0}^{2}}{2 d \nu}\right) \Delta_{x}
$$

Generalized Taylor dispersion: inverse dependence of effective viscosity on ν
[Taylor 1954, Frankel 1989]
Let $f=h e^{i \boldsymbol{k} \cdot x}, k=|\boldsymbol{k}|($ can take $\kappa=0)$
Lemma (Linear Taylor dispersion, Albritton-Ohm SIMA 2023)

$$
\|h(\cdot, t)\|_{L_{\rho}^{2}} \lesssim e^{-c_{0} \mu_{\nu, k} t}\left\|h^{\mathrm{in}}\right\|_{L_{\rho}^{2}}, \quad \text { where } \mu_{\nu, k}= \begin{cases}\frac{k^{2}}{\nu}, & k \leq \nu \\ \nu, & k \geq \nu\end{cases}
$$

Corollary:

- Nonlinear stability of $\psi=0$ on \mathbb{R}^{3}
- Nonlinear stability of any $\psi=\bar{\psi}$ for pullers on \mathbb{T}^{d}.

Enhanced dissipation on \mathbb{T}^{d}

Can do better than ν^{-1} timescale for small $\bar{\psi} \ll \nu^{-\frac{1}{2}}$
([Coti Zelati-Dietert-Gerard Varet 2023]: linear enhancement for all $\bar{\psi}$ satisfying Penrose)
Due to the hypocoercive effect of $\boldsymbol{p} \cdot \nabla_{x}-\nu \Delta_{p}$, $\psi(\boldsymbol{x}, \boldsymbol{p}, t) \rightarrow\langle\psi\rangle(\boldsymbol{p}, t):=\int \psi(\boldsymbol{x}, \boldsymbol{p}, t) d \boldsymbol{x}$ in enhancement time $O\left(\nu^{-\frac{1}{2}-}\right)$.

The \boldsymbol{x}-averages $\langle\psi\rangle$ converge to $\bar{\psi}$ in diffusive time $O\left(\nu^{-1}\right)$.
This effect is better visualized for shear flows:

Nonlinear evolution of $f=\psi-\bar{\psi}$:

$$
\begin{aligned}
\partial_{t} f+\boldsymbol{p} \cdot \nabla_{x} f & -\iota d \bar{\psi} \nabla_{x} \boldsymbol{u}: \boldsymbol{p} \otimes \boldsymbol{p}-\nu \Delta_{p} f-\kappa \Delta_{x} f \\
& =-\boldsymbol{u} \cdot \nabla_{x} f-\operatorname{div}_{p}[(\mathbf{I}-\boldsymbol{p} \otimes \boldsymbol{p})(\nabla \boldsymbol{u}[f] \boldsymbol{p}) f] .
\end{aligned}
$$

Only nonzero spatial modes enhance. Consider f_{0} and f_{\neq}separately:
Theorem (Nonlinear enhanced dissipation, Albritton-Ohm SIMA 2023)
Suppose $f^{\mathrm{in}} \in H_{x}^{1} L_{p}^{2}\left(\mathbb{T}^{d} \times S^{d-1}\right)$ and $\bar{\psi} \ll \nu^{1 / 2+}$. If

$$
\varepsilon:=\left\|f_{\neq}^{\mathrm{in}}\right\|_{H_{x}^{2} L_{p}^{2}} \leq \varepsilon_{0} \quad \text { and } \quad\left\|f_{0}^{\mathrm{in}}\right\|_{L_{p}^{2}} \leq \varepsilon_{0}, \quad 0<\varepsilon_{0} \ll \min \left(\kappa^{3 / 4+}, \nu^{3 / 4+}\right)
$$

then the nonzero modes of f satisfy the enhanced decay rate

$$
\left\|f_{\neq}(\cdot, t)\right\|_{H_{x}^{2} L_{\rho}^{2}} \lesssim e^{-c_{\neq} \lambda_{\nu} t} \varepsilon, \quad \lambda_{\nu}=\frac{\nu^{1 / 2}}{1+|\log \nu|}
$$

Furthermore, the zero mode satisfies

$$
\left\|f_{0}\right\|_{L_{p}^{2}} \lesssim e^{-c_{0} \nu t}\left(\left\|f_{0}^{\mathrm{in}}\right\|_{L_{p}^{2}}+\nu^{-1} \varepsilon^{2}\right)
$$

What's next?

- Complete near-equilibrium understanding of the model Precise asymptotics of the generalized Taylor dispersion \& stability of $\psi=0$ on \mathbb{R}^{2} (see [Beck-Wayne-Chaudhary 2017]). Dispersion of swimmers in inviscid setting; nonlinear Landau damping.
- Boundary effects Develop PDE theory of swimmers in bounded domains - particularly in the absence of translational diffusion $\kappa \rightarrow 0$. Identify steady states and their stability.
- Far-from-equilibrium dynamics Have global well-posedness for $\kappa>0$. Estimate Hausdorff dimension of global attractor (\# of degrees of freedom of turbulent bacterial suspension)
- Mixing and transport in more complicated flows

Quantify effects of swimming in shear flows and cellular flows (see [Ran, et al. 2021]).

Thanks for listening!

Questions?

