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Microswimmers: from one to many

[Ovation Fertility 2017, Kantsler 2017]

[Peng–Liu–Cheng 2021]
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I. Single swimmer

Undulatory swimming via resistive force theory
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Classical elastohydrodynamics

Immersed, inextensible elastic filament X : [0, L]× [0,T ]→ R3:

1. Resistive force theory:

∂X
∂t

(s, t) = −ch(I + XsXT
s )fh(s, t)

ch = |log(ε/L)|4π

2. Euler-Bernoulli beam theory:

fh(s, t) =
(
E(Xsss − (κ0)sen)− τXs

)
s
, |Xs |2 = 1

Here κ0(s, t): simple representation of
internal mechanics (see [Fauci–Peskin
1988, Camalet–Jülicher 2000,
Thomases–Guy 2017])

3. Force-free and torque-free:∫ L

0

fh(s, t) = 0 ,

∫ L

0

X (s, t)× fh(s, t) = 0
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Classical elastohydrodynamics

Together (rescaling time as Ech
L4

t):

∂X
∂t

(s, t) = −
(
I + XsXT

s

)(
Xsss − (κ0)sen − τ(s, t)Xs

)
s

|Xs |2 = 1

(Xss − κ0en)
∣∣
s=0,1

= 0 , (Xsss − (κ0)sen − τXs)
∣∣
s=0,1

= 0

When κ0 is time-independent, evolution seeks to minimize bending energy:

1

2

d

dt

∫ 1

0

(κ− κ0)2 ds = −
∫ 1

0

(
(κ− κ0)ss − κ3 − τκ

)2
ds

− 2

∫ 1

0

(3κκs − κ(κ0)s + τs)
2 ds < 0

(where κ = Xss · en)

Goal: Given a time-dependent preferred curvature κ0, study the PDE
evolution, particularly the inextensibility constraint. Prove conditions on κ0

allowing the filament to swim, and test predictions numerically.
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Classical elastohydrodynamics

Tangent angle formulation:

θ̇ = −θssss + (κ0)sss +N [θs , κ0]

τss = 1
2
θ2s τ + T [θs , κ0]

Curvature formulation: (κ = θs , κ = κ− κ0, τ = τ + κ2
0):

κ̇ = −κssss − κ̇0 +
(
N [κ, κ0]

)
s

τ ss = 1
2
(κ+ κ0)2τ + T [κ, κ0]

κ
∣∣
s=0,1

= κs

∣∣
s=0,1

= τ
∣∣
s=0,1

= 0

N [κ, κ0] := 9κ(κ + 2κ0)κs + 8κ20κs + 7κ2(κ0)s + 8κκ0(κ0)s + 3τs (κ + κ0) + τ(κ + κ0)s

2T [κ, κ0] := κ(κ + κ0)
2(κ + 2κ0) + (κ + κ0)sκs − 2

(
κ(κ + 2κ0)

)
ss − 3

(
κs (κ + κ0)

)
s
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Well-posedness

Consider: ∂ssssψ, ψ|s=0,1 = ψs |s=0,1 = 0

Eigenvalues: λk = ξ4k where cos(ξk) cosh(ξk) = 1 , ξ0 = 0

Eigenfunctions: ψk = Ak (cos(ξks)− cosh(ξks)) + Bk (sin(ξks)− sinh(ξks))

Theorem (Well-posedness [Mori–O. Nonlin. 2023])

Given a sufficiently small κ0 ∈ C 1([0,T ];H1),

1. There is a time T ∗(κin) s.t. a unique solution κ exists up to time T ∗ .

2. If ‖κin‖L2 is sufficiently small, for any T > 0, a unique solution κ exists
and satisfies

sup
t∈[0,T ]

(‖κ‖L2 +min{t1/4, 1} ‖κ‖Ḣ1 ) ≤ c (‖κin‖L2 + ‖κ0‖H1 + ‖κ̇0‖L2 ) .

If κ0 ≡ 0,
‖κ‖L2 +min{t1/4, 1} ‖κ‖Ḣ1 ≤ c e−tλ1‖κin‖L2 .
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Swimming

Theorem (Swimming [Mori–O. Nonlin. 2023])

Suppose that κ0(s, t) ∈ C 1([0,T ];H3) is T -periodic in time and sufficiently
small. The filament swims with speed

U(t) = −
∫ 1

0

(κ0)s(κ− κ0) ds + O(‖κ0‖3) .

Writing κ0(s, t) =
∑∞

m,k=1

(
am,k cos(ωmt)− bm,k sin(ωmt)

)
ψk(s), ω = 2π

T
:

1

T

∫ T

0
U dt =

1

2

∞∑
m,k,`=1

ω2m2

ω2m2 + λ2k

(
λk

ωm

(
am,kbm,` − bm,kam,`

)
+ am,kam,` + bm,kbm,`

)∫ 1

0
ψk (ψ`)s ds + O(‖κ0‖3) .

I Swimming speed scales like ‖κ0‖2 ([Taylor 1951]: square of amplitude)

I Valid at finite bending stiffness:
t = Et′ =⇒ U(t′) = −E

∫ 1

0
(κ0)s(κ− κ0) ds
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Unpacking the swimming expression

Consider forcing at lowest nonzero temporal frequency only:

κ0(s, t) = F1(s) cos(ω t) + F2(s) sin(ω t)

Then (leading order) swimming speed is

1

2

∞∑
k,`=1

ω2

ω2 + λ2k

(
λk

ω

(
akb` − bka`

)
+ aka` + bkb`

)∫ 1

0
ψk (ψ`)s ds

“Scallop Theorem” for elastic swimmers: (Conditions on κ0, not actual motion)

1. If F1 and F2 are both even or both odd about s = 1
2
, the integral∫ 1

0
ψk(ψ`)s ds vanishes and the filament does not swim.

2. If F1 = 0, F2 = 0, or F1 = ±F2, then the first term vanishes. The
filament may still swim, but its displacement will be very small, due to the
size of λk .

Note that a traveling wave κ0 avoids both (1) and (2).
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Optimization

What is the optimal κ0 for swimming?

Given κ0 =
∑∞

k=1

(
ak cos(ωt)− bk sin(ωt)

)
ψk(s), consider average work:

1

T

∫ T

0
W dt :=

1

T

∫ T

0

∫ 1

0
κ̇0(κ− κ0) ds dt ≈

∞∑
k=1

λk

2

ω2

ω2 + λ2k

(
a2m,k + b2m,k

)
Define Ukmax , Wkmax to be swimming speed and work using first kmax modes.
Solve:

min
ak ,bk

Ukmax

subject to Wkmax = 1 ,
∑
k

a2k =
∑
k

b2
k = 1 .

Solution: (Same up to time translation)

Will compare to classic traveling wave F1 = sin(ωs) and F2 = cos(ωs)
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Numerical method: back to dynamics

Inspired by [Moreau et al. 2018, Maxian et al. 2021], rather than solve BVP
for τ , enforce inextensibility directly in parameterization:

X (s, t) = X0(t) +

∫ s

0
Xs(s

′, t)ds′ , Xs = et =

(
cos θ
sin θ

)
.

Recast evolution:

en(s, t) ·
∫ s

0

f (s ′, t) ds ′ = −θss + (κ0)s ,

where f (s, t) = (I + eteT
t )−1 ∂X

∂t
= (I− 1

2
eteT

t )
(
Ẋ0 +

∫ s

0
ėt(s ′) ds ′

)
.

Accompany with
∫ 1

0
f (s, t) ds = 0 to enforce (−θss + (κ0)s)

∣∣
s=1

= 0.

Discretize fiber into N segments and enforce at midpoints:

θ1

θ2

θ3

θ4
X1

X2 X3
θN

XN

· · · · · ·
X 1

2

X 3
2

XN− 1
2

X0

XN−1

Have N + 2 equations for N + 2 unknowns: X0 and θj , j = 1, . . . ,N.
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Numerical results

Non-swimmer Bad swimmer

Classic traveling wave Optimum 1 Optimum 2
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Where is this heading?

I Resistive force theory dynamics as limit of PDE in the bulk
We have achieved this for nonlocal slender body theory in the static
setting in [Mori-O.-Spirn CPAM 2020, Mori-O.-Spirn ARMA 2020,
Mori-O. SAPM 2021, etc.]
Progress in dynamic setting in [O. 2023]

I What is the best way to implement an inextensibility constraint?
Quantify the differences between projection methods versus direct
discretization of curve evolution via numerical analysis

I Swimming questions
PDE-constrained optimization of preferred curvature for swimming;
resistive force theories in viscoelastic media [Ohm 2022]; preferred
curvature as limit of micromechanical description of filament motion
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II. Many swimmers

Collective behavior via kinetic theory
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Active suspensions and bacterial turbulence

[Kantsler 2017]

[Peng–Liu–Cheng 2021]
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Motion of a rod-like swimmer

Each swimmer is approximated by a force dipole:

[Saintillan-Shelley 2013]

The flow field around a single swimmer is approximately

−µ∆u +∇q = ±F `

2
(p · ∇x)δ(x)p︸ ︷︷ ︸
=divx (p⊗p δ(x))

, div u = 0 .

Rod-like particles swim with speed V0 and are transported:

ẋ = V0p + u , ṗ = (I− p ⊗ p)(∇up) .
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Kinetic model of an active suspension

∂tψ +∇x · (ẋψ) +∇p · (ṗψ) = κ∆xψ + ν∆pψ

ẋ = p + u
ṗ = (I− p ⊗ p)(∇u p)

−∆u +∇q = ∇x ·Σ, div u = 0

Σ(x , t) = ι

∫
Sd−1

p ⊗ p ψ(x , p, t) dp, ι ∈ {±}

[Saintillan–Shelley 2008]

ψ(x , p, t): # of swimmers at x ∈ Td with orientation p ∈ Sd−1

u(x , t), q(x , t): fluid velocity & pressure
Σ(x , t): signed active stress (+ pullers, − pushers)
ν, κ: (nondimensional) diffusion coefficients
ψ: (nondimensional) number density of swimmers (ψ = FLn

2πµV0
)

[Saintillan–Shelley 2013]
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Stability of the uniform isotropic equilibrium

What do we know? [Hohenegger–Shelley 2010]

Linear stability analysis shows unstable eigenvalue(s) for large ψ in pusher
suspensions (ι = −). In 2D, consider

ψ = h(k , p)eik·x+σt , σ ∈ C, p = cos θex + sin θey

If ν = 0, growth rate σ satisfies (note: β ∼ 1/ψ)∫ 2π

0

cos2 θ sin2 θ

σ + κ k2 + ikβ cos θ
dθ = π

Solve for σ numerically:
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Pusher instability: 2D patterns

[Ohm–Shelley JFM 2022]
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Pusher instability: 2D patterns

[Ohm–Shelley JFM 2022]

(2D):

(1D):
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What about stability?

Without swimming, the uniform isotropic pusher equilibrium ψ = ψ is always
unstable (for ν, κ� 1).

How does swimming stabilize the uniform isotropic steady state ψ ≡ ψ?

This kinetic model shares similarities with more standard kinetic theories for
many-particle systems (Vlasov–Poisson, Boltzmann, etc.)

Can adapt the tools and language for studying stability in these more standard
settings to answer this question.
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Back to the kinetic model [Saintillan–Shelley 2008]

∂tψ + p · ∇xψ + u · ∇xψ +∇p · [(I− p ⊗ p)(∇up)ψ]

= ν∆pψ + κ∆xψ

−∆u +∇q = ∇x ·Σ, div u = 0

Σ(x , t) = ι

∫
Sd−1

p ⊗ p ψ(x , p, t) dp, ι ∈ {±}

We quantify three stabilizing effects of swimming:

1. Landau damping: Decay of solutions to the linearized “inviscid”
(ν = κ = 0) equations on Td , d = 2, 3

2. Taylor dispersion: On R3, nonlinear stability of ψ = 0 due to dispersive
effect of p · ∇x − ν∆p

3. Enhanced dissipation: Nonlinear stability of ψ = ψ (small) on Td with

convergence to 〈ψ〉(p, t) :=
∫
ψ(x , p, t) dx in time O(ν−

1
2 )
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Phase mixing

In (linearized) inviscid setting (ν = κ = 0), stability for ψ = ψ on Td is due to
orientation mixing from swimming

Familiar example: phase mixing in transport equation, f = f (x , v , t):

∂f

∂t
+ v · ∇x f = 0, x , v ∈ Td × Rd

[Villani 2010]

On Fourier side: ∂ f̂
∂t
− k · ∇η f̂ = 0; i.e. f̂ (t, k, η) = f̂ in(k, η + kt)

If f in ∈W `,1
v : |f̂ (t, k, η)| = |f̂ in(k, η + kt)| ≤ C |η + kt|−` → 0, k 6= 0
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Orientation mixing

Swimming has similar effect:

[Hohenegger-Shelley 2010]

I For each k 6= 0, solution is transferred to higher modes in p over time
(weak convergence to zero via oscillations in p)

I Concentration c(x , t) =
∫
Sd−1 ψ(x , p, t) dp converges to mean; k = 0

unchanged
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Orientation mixing

Linearized equation in inviscid setting (ν = κ = 0):

∂t f + p · ∇x f − dψ∇u : p ⊗ p = 0

Kinetic free swimming: ψ = 0. Write f = he ik·x : (take k = ke1, t 7→ t/k)

∂th + ip1h = 0 , h(·, 0) = hin .

Writing p1 = cos θ, oscillations grow over time except where ∂θp1 = 0, which
limits decay:

‖h‖H−(d−1) . 〈t〉−
d−1
2 ‖hin‖Hd−1

Compare to transport equation (Vlasov-Poisson): v · ∇x gives exponential
decay to mean-in-x if f in is analytic-in-v .
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Landau damping

Incorporate nonlocal term ψ > 0. Obtain Volterra equation for ∇̂u: (k = ke1)

∇̂u[h] = ∇̂u[e−ip1thin]− ιdψ
∫ t

0

K(t − s) ∇̂u[h](s) ds .

Taking Fourier-Laplace transform L, may (formally) solve:

L∇̂u[h] = (I + ιdψLK)−1L∇̂u[e−ip1thin] .

Theorem (Linear Landau damping, Albritton-Ohm SIMA 2023)

Let f in ∈ L2
xH

d+1
p (Td × Sd−1). Suppose ι = + or ψ < ψ

∗
. Then (〈t〉 =

√
1 + t2)∫

‖∇u(·, t)‖2L2x 〈t〉
d−ε dt .ψ,ε ‖f

in‖2
L2xH

d+1
p

.

(Sharpened to L∞-in-time bound in [Coti Zelati–Dietert–Gerard Varet 2023])

Stability threshold ψ
∗

for pushers (ι = −) arises as a Penrose condition which
is equivalent to no solution with Re(λ) ≥ 0 to

ιdψ

∫
Sd−1

p2
1p

2
j

λ+ ip1
dp = 1

(i.e. the linearized operator has no unstable/marginally stable eigenvalue)
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Generalized Taylor dispersion

Now consider 0 < ν, κ� 1 and linearized PDE with ψ = 0:

∂t f + p · ∇x f = ν∆pf + κ∆x f .

For swimmers with speed U0, predict effective x-diffusion(
κ+

U2
0

2dν

)
∆x

(see [Saintillan-Shelley 2015, Lauga 2020])

Generalized Taylor dispersion: inverse dependence of effective viscosity on ν
[Taylor 1954, Frankel 1989]

Let f = he ik·x , k = |k | (can take κ = 0)

Lemma (Linear Taylor dispersion, Albritton–Ohm SIMA 2023)

‖h(·, t)‖L2p . e−c0µν,k t‖hin‖L2p , where µν,k =

{
k2

ν
, k ≤ ν

ν, k ≥ ν

Corollary:

I Nonlinear stability of ψ = 0 on R3

I Nonlinear stability of any ψ = ψ for pullers on Td .
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Enhanced dissipation on Td

Can do better than ν−1 timescale for small ψ � ν−
1
2

([Coti Zelati–Dietert–Gerard Varet 2023]: linear enhancement for all ψ satisfying Penrose)

Due to the hypocoercive effect of p · ∇x − ν∆p,

ψ(x , p, t)→ 〈ψ〉(p, t) :=
∫
ψ(x , p, t) dx in enhancement time O(ν−

1
2
−).

The x-averages 〈ψ〉 converge to ψ in diffusive time O(ν−1) .

This effect is better visualized for shear flows:
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Enhanced dissipation on Td

Nonlinear evolution of f = ψ − ψ:

∂t f + p · ∇x f − ιdψ∇xu : p ⊗ p−ν∆pf − κ∆x f

= −u · ∇x f − divp[(I− p ⊗ p)(∇u[f ]p)f ] .

Only nonzero spatial modes enhance. Consider f0 and f 6= separately:

Theorem (Nonlinear enhanced dissipation, Albritton–Ohm SIMA 2023)

Suppose f in ∈ H1
xL

2
p(Td × Sd−1) and ψ � ν1/2+. If

ε := ‖f in6= ‖H2
x L

2
p
≤ ε0 and ‖f in0 ‖L2p ≤ ε0, 0 < ε0 � min(κ3/4+, ν3/4+),

then the nonzero modes of f satisfy the enhanced decay rate

‖f 6=(·, t)‖H2
x L

2
p
. e−c6=λν tε , λν =

ν1/2

1 + |log ν|

Furthermore, the zero mode satisfies

‖f0‖L2p . e−c0νt

(
‖f in0 ‖L2p + ν−1ε2

)
.
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What’s next?

I Complete near-equilibrium understanding of the model
Precise asymptotics of the generalized Taylor dispersion & stability of
ψ = 0 on R2 (see [Beck–Wayne–Chaudhary 2017]). Dispersion of
swimmers in inviscid setting; nonlinear Landau damping.

I Boundary effects
Develop PDE theory of swimmers in bounded domains – particularly in the
absence of translational diffusion κ→ 0. Identify steady states and their
stability.

I Far-from-equilibrium dynamics
Have global well-posedness for κ > 0. Estimate Hausdorff dimension of
global attractor (# of degrees of freedom of turbulent bacterial
suspension)

I Mixing and transport in more complicated flows
Quantify effects of swimming in shear flows and cellular flows (see [Ran, et
al. 2021]).
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Thanks for listening!

Questions?
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