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Microswimmers: from one to many

[Ovation Fertility 2017, Kantsler 2017]

[Peng—Liu-Cheng 2021]
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I. Single swimmer

Undulatory swimming via resistive force theory

3/31



Classical elastohydrodynamics

Immersed, inextensible elastic filament X : [0, L] x [0, T] — R:

1. Resistive force theory:

1204
5 (s, t) = —an(l 4+ X X )fu(s, t)
o = Logle/Ll

2. Euler-Bernoulli beam theory:
fh(S7 t) = (E(Xsss - (Ro)sen) - TXS)57 |X5|2 =1

Here ro(s, t): simple representation of
internal mechanics (see [Fauci—Peskin
1988, Camalet—Jiilicher 2000,
Thomases—Guy 2017])

3. Force-free and torque-free:

L L
/0 fu(s, ) =0, / X(s, t) x fu(s, £) = 0

0
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Classical elastohydrodynamics

Together (rescaling time as £ t):

L4
oX
ot (S t) = _(I + XSXsT) (Xsss - (K'O)sen - 7'(5, t)Xs)s
X" =1
(Xss - /ﬁ?(]eﬂ)|s:0)1 =0 s (Xsss — (Ho)sen — TXS)’S:O,I =0

When ko is time-independent, evolution seeks to minimize bending energy:

1 , )
2dt/(/~c—fco) ds——/0 ((/{—/{0)55—.% —TK,) ds
1
72/ (3kks — K(Ko)s + 75)* ds < 0
0

(where K = Xss - €n)

Goal: Given a time-dependent preferred curvature ko, study the PDE
evolution, particularly the inextensibility constraint. Prove conditions on o
allowing the filament to swim, and test predictions numerically.
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Classical elastohydrodynamics

Tangent angle formulation:

é - 795555 + (KJO)sss +N[957 KJO]
Tss = %057 + 7~[05> HO]

Curvature formulation: (k

OS,R:K—KQ,F:T-FKU%):

E = —FKssss — Ko + (N[E, K/O])s
Tss = 2(R + k0)°T + TR, ro]

=7 =0

r :ES{ s=0,1

s=0,1

N

7, rol i= OR(R + 2k0)Fs + BRGTs + TR2(rQ)s + 8Frq(ro)s + 37s(F + rg) + F(F + ro)s

2T7[R, kol :== (R + KO)Z(E +2r0g) + (F + rg)sFs — 2(R(F + 2r0)) ¢ — 3(Fs(RF + rg))
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Well-posedness

Consider: Ossss®),  P|s=0,1 = ¥s|s=0,1 =0

Eigenvalues: \x = £; where cos(&x) cosh(éx) =1, & =0

Eigenfunctions: 1, = Ay (cos(&ks) — cosh(&ks)) + Bi (sin(&ks) — sinh(&ks))
Theorem (Well-posedness [Mori—O. Nonlin. 2023])

Given a sufficiently small ko € C*([0, T]; HY),

1. There is a time T*(R™) s.t. a unique solution % exists up to time T* .

2. If |[F™||,2 is sufficiently small, for any T > 0, a unique solution % exists
and satisfies

S[L(l)pT](HEHLz +min{t"/*, 1} [Rll 1) < e (1K™ [l 2 + lwoll g + lloll,2) -
te|0,

If ko =0,
lI%ll2 + min{e"/%, 1} |sllgn < ce™ M [|8™ 2
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Swimming

Theorem (Swimming [Mori—O. Nonlin. 2023])

Suppose that ro(s, t) € C*([0, T]; H*) is T-periodic in time and sufficiently
small. The filament swims with speed

u(t) = - / (ko)s(s — o) ds + O(loll?) .

Writing ro(s, t) = Y07y (@m,k cos(wmt) — b,k sin(wmt))yi(s), w = 2F:

T
1 /7 1 = w?m? Ak
— Udt= = ————— | — (am.xbm.e — bm.xa
T/O 2mk2t;:1 w2m2+)\i (wm( m,kPm, £ 'm, k m,()

1
+ am,kam,¢ + bm,kbm,£> / Yr(te)s ds 4+ O(||wol)?) -
0

> Swimming speed scales like ||ko||> ([Taylor 1951]: square of amplitude)

» Valid at finite bending stiffness:
t=Et' = U(t') = —E [} (r0)s(k — o) ds
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Unpacking the swimming expression

Consider forcing at lowest nonzero temporal frequency only:

ko(s, t) = Fi(s) cos(w t) + F2(s) sin(w t)

Then (leading order) swimming speed is

1 & w? <)\k 1
= ——— | = (akbe — brar) + akar + bkbe> / Yi(e)s ds
2 k,ezzl W AL\ w 0

“Scallop Theorem” for elastic swimmers: (Conditions on rsq, not actual motion)

1. If /1 and F> are both even or both odd about s = % the integral
fol Yi(1)¢)s ds vanishes and the filament does not swim.

2. If F =0, F, =0, 0or F;==F,, then the first term vanishes. The
filament may still swim, but its displacement will be very small, due to the
size of k.

Note that a traveling wave o avoids both (1) and (2).
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Optimization
What is the optimal ko for swimming?
Given ko = > 5, (ak cos(wt) — by sin(wt))vi(s), consider average work:

/ W dt .= / /1 '0( o)d dt E A (a b )
— = = ro(k — K s dt ~ e 2 (2 —+ 2
L 0 T 0 0 k=1 2 w? Ai ' ’

Define U, Wh,., to be swimming speed and work using first kmax modes.

Solve:

min U,
aj, by

subject to  W,., =1, Zai = Zbi =1.
Solution: (Same up to time translation) k k

15 N\
5 05 5 1 / \
8 0N A~ g /
05
=05 \ / = / \
E / F 0 va AN
05\ /
15 -~ \\/ /
2 1
0 02 04 06 08 1 0 02 04 06 08 1

Will compare to classic traveling wave F1 = sin(ws) and F> = cos(ws)
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Numerical method: back to dynamics

Inspired by [Moreau et al. 2018, Maxian et al. 2021], rather than solve BVP
for T, enforce inextensibility directly in parameterization:

X(s, t) / Xs(s', t)ds', Xs=e, = (Z?:g) .

Recast evolution:
en(si) [ F(50) 0 =~ t (o)
0

where f(s,t) = (1 + ecel ) " 2%X = (1 - Leie) (Xo + [5 éu(s') ds').

Accompany with fol f(s,t) ds = 0 to enforce (—0ss + (K,o)s)L:l =0.

Discretize fiber into N segments and enforce at midpoints:

X, X2 0 Xy

Have N + 2 equations for N + 2 unknowns: Xp and 6;, j =1,..., N.
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Numerical results

Non-swimmer Bad swimmer

Classic traveling wave Optimum 1 Optimum 2

12/31



Where is this heading?

» Resistive force theory dynamics as limit of PDE in the bulk
We have achieved this for nonlocal slender body theory in the static
setting in [Mori-O.-Spirn CPAM 2020, Mori-O.-Spirn ARMA 2020,
Mori-O. SAPM 2021, etc.]
Progress in dynamic setting in [O. 2023]

» What is the best way to implement an inextensibility constraint?
Quantify the differences between projection methods versus direct
discretization of curve evolution via numerical analysis

» Swimming questions
PDE-constrained optimization of preferred curvature for swimming;
resistive force theories in viscoelastic media [Ohm 2022]; preferred
curvature as limit of micromechanical description of filament motion
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Il. Many swimmers

Collective behavior via kinetic theory

14 /31



Active suspensions and bacterial turbulence

[Kantsler 2017]

[Peng—Liu-Cheng 2021]
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Motion of a rod-like swimmer

Each swimmer is approximated by a force dipole:

Pusher (e.g. E. coli) Puller (e.g. C. reinhardtii)

N

—
\ " /} N K
3 [Saintillan-Shelley 2013]

The flow field around a single swimmer is approximately

—pAu+Vqg= :l:%e (p-V)i(x)p, divu=0.
—_—

=divx(p®p §(x))

Rod-like particles swim with speed V4 and are transported:

x=VWp+u, p=(1-pap)(Vup).
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Kinetic model of an active suspension

O + Vi - (x0) + Vp - (PV) = kA + vDp1p
XxX=p+u
p=(1-p®p)(Vup)

—Au+Vg=V,-2, divu=0

3(x, t) = L/SH p®@pi(x,p,t)dp, 1€ {£}

[Saintillan—Shelley 2008]

P(x, p,t): # of swimmers at x € T? with orientation p € §97*
u(x,t), g(x, t): fluid velocity & pressure

3(x, t): signed active stress (+ pullers, — pushers)

v, k: (nondimensional) diffusion coefficients

. (nondimensional) number density of swimmers () =

FL
27ru,\1/0 )

TR TR v

[Saintillan—Shelley 2013]
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Stability of the uniform isotropic equilibrium
What do we know? [Hohenegger-Shelley 2010]

Linear stability analysis shows unstable eigenvalue(s) for large 9 in pusher
suspensions (¢ = —). In 2D, consider

¥ = h(k, p)e™* ™™ 5 C, p=cosbe, +sinbe,

If v =0, growth rate o satisfies (note: 5 ~ 1/%))
o7 202
/ cos 95|.n 0 -
o 0+ Kk?+ ikBcosO

Solve for o numerically:

0.5
A
02545
2,02
0.5 ©
b c R
T 01 / =
g D
~0.05
0 E 05
0 02 04 06 0 02 04 06
—1 —1
o k] 71K
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025 A
%02
<
4015

B

Pusher instability: 2D patterns

[Ohm=Shelley JFM 2022]

A B C D

Q
& 0.05

N (2D)
Supercritical Subcritical Supércritical Subcritical
pitchfork  pitchfork Hopf Hopf
— : . (1ID)
E
=0 07
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(1D):

Pusher instability: 2D patterns

0254

B

%L 02
<
Lols

A B C D

[Ohm—Shelley JFM 2022]

SuperCriﬁcal Subcritical Su;;ércritical

pitchfork  pitchfork Hopf

~0.05

0.6

(2D)
Subcritical
Hopf
(1D)
v ~0T
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What about stability?

Without swimming, the uniform isotropic pusher equilibrium ) = ) is always
unstable (for v,k < 1).

How does swimming stabilize the uniform isotropic steady state ¢ = ¢)?

This kinetic model shares similarities with more standard kinetic theories for
many-particle systems (Vlasov—Poisson, Boltzmann, etc.)

Can adapt the tools and language for studying stability in these more standard
settings to answer this question.
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Back to the kinetic model [Saintillan-Shelley 2008]

O +p-Vith +u-Vip+ V- [(I = p® p)(Vup)y]
= VA + kD)
—Au+Vg=V,-3 divu=0

(o) =1 [ pepvlxpidp ot

We quantify three stabilizing effects of swimming:
1. Landau damping: Decay of solutions to the linearized “inviscid”
(v =k = 0) equations on T9, d = 2,3
2. Taylor dispersion: On R, nonlinear stability of ) = 0 due to dispersive
effect of p- Vi —vA,
3. Enhanced dissipation: Nonlinear stability of ¢ = 9 (small) on T? with
convergence to (Y)(p, t) := [(x,p, t)dx in time O(I/_%)
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Phase mixing

In (linearized) inviscid setting (v = x = 0), stability for 1) = 1) on T% is due to
orientation mixing from swimming

Familiar example: phase mixing in transport equation, f = f(x, v, t):

%+V-fo=07 x,v €T x R?

t=0 P=1 t=10
[Villani 2010]

On Fourier side: 2 — k-V,f=0; e f(t kn)=F"(k,n+ kt)

If F" e Wob |F(t, k)| = |F™(k,n + kt)] < Cln+ kt| ¢ =0, k#0
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Orientation mixing

Swimming has similar effect:

—Re(CY) I
=20 - Im(Cy) I i y

-=-sin(¢) _gl=Re(A1y) ---Im(A; 4) ==sin(¢)
o 1 4 2 3 0 1 o 2 3
(a) (b)

)

) —sin(d

0 1 6 2 3

(©) (d)

B —Re(A; 4) ---Im(A i) —=sin(¢)
0 1 o 2 3
[Hohenegger-Shelley 2010]

» For each k # 0, solution is transferred to higher modes in p over time
(weak convergence to zero via oscillations in p)

» Concentration c(x, t) = fsdfl Y(x, p, t) dp converges to mean; k =0
unchanged
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Orientation mixing

Linearized equation in inviscid setting (v = k = 0):
Of+p-Vif —dyVu:pp=0
Kinetic free swimming: 1) = 0. Write f = he™ X (ake k = kep. ¢ > t/4)
dth+ipth=0, h(-,0)=h".

Writing p1 = cos @, oscillations grow over time except where dgp1 = 0, which
limits decay:

_d-1 g
1Al y—@-n S (67 2 [[A7 o

Compare to transport equation (Vlasov-Poisson): v - V. gives exponential
decay to mean-in-x if ' is analytic-in-v.
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Landau damping

Incorporate nonlocal term v > 0. Obtain Volterra equation for Vu: (k = key)
Vulh] = Vule P h™"] — de/ K(t — s) Vul[h](s) ds.
0

Taking Fourier-Laplace transform L, may (formally) solve:

LVulh] = (I + tdOLK) LV ule ™A™ .

Theorem (Linear Landau damping, Albritton-Ohm SIMA 2023)
Let fin € Lng“(Td x §971). Suppose 1 = + or 9 < W, Then (o - vit )

2 d— in| 2
J U6l 010 de S0 177y

(Sharpened to L -in-time bound in [Coti Zelati-Dietert-Gerard Varet 2023])
Stability threshold 1) for pushers (v = —) arises as a Penrose condition which
is equivalent to no solution with Re(A) > 0 to

— pip;
sd—1 A+ ip1

vd dp=1

(i.e. the linearized operator has no unstable/marginally stable eigenvalue)
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Generalized Taylor dispersion

Now consider 0 < v,k < 1 and linearized PDE with 1) = 0:
Oef + p - Vif = vApf + KA.

For swimmers with speed Uy, predict effective x-diffusion
Us
20 ) A,
(K + 2d1/)

Generalized Taylor dispersion: inverse dependence of effective viscosity on v
[Taylor 1954, Frankel 1989]

(see [Saintillan-Shelley 2015, Lauga 2020])

Let f = he’*™*, k = |k| (can take k = 0)
Lemma (Linear Taylor dispersion, Albritton-Ohm SIMA 2023)

K2

i — <
llA(-, t)||Lg S efcw”‘ktHhmHLg, where 1, = { v v

v, k>v

Corollary:
» Nonlinear stability of 1) = 0 on R®
» Nonlinear stability of any ¢ = 1 for pullers on T¢.
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Enhanced dissipation on T¢

Can do better than v~ timescale for small i) < v ™2

([Coti Zelati-Dietert-Gerard Varet 2023]: linear enhancement for all 7 satisfying Penrose)

Due to the hypocoercive effect of p -V, — vA,,
P(x, p, t) = (¥)(p,t) := [¥(x,p, t) dx in enhancement time O(u’%’).

The x-averages (¢) converge to 1 in diffusive time O(v ™) .

This effect is better visualized for shear flows:
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Enhanced dissipation on T¢

Nonlinear evolution of f = 1) —
Of +p-Vif —1dpViu: p®@ p—vA,f — kALF
= —u - V.f —div,[(1 — p® p)(Vu[f]p)f].

Only nonzero spatial modes enhance. Consider fy and f. separately:

Theorem (Nonlinear enhanced dissipation, Albritton—-Ohm SIMA 2023)
Suppose f™ € HXL3(TY x S and ¢ < vM?*. If

€= ||f;“|\H3L% <eg and |\f0i“|\L5 < eo, 0 < g0 < min(k>/*, 34,
then the nonzero modes of f satisfy the enhanced decay rate

172

) < —cyApt —_
[1£2( 7t)||H§L%, S € £ M 1+ |logv|

Furthermore, the zero mode satisfies

Il S == (1670 +v7%¢%)
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What's next?

Complete near-equilibrium understanding of the model

Precise asymptotics of the generalized Taylor dispersion & stability of
¥ = 0 on R? (see [Beck-Wayne—Chaudhary 2017]). Dispersion of
swimmers in inviscid setting; nonlinear Landau damping.

Boundary effects

Develop PDE theory of swimmers in bounded domains — particularly in the
absence of translational diffusion x — 0. ldentify steady states and their
stability.

Far-from-equilibrium dynamics

Have global well-posedness for x > 0. Estimate Hausdorff dimension of
global attractor (# of degrees of freedom of turbulent bacterial
suspension)

Mixing and transport in more complicated flows
Quantify effects of swimming in shear flows and cellular flows (see [Ran, et
al. 2021]).

30/31



Questions?
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