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Boundaries between scientific domains
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Crossing domain boundaries: Mason Modeling Days
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Collaborators

Materials modeling and simulation:
joint with D. Kinderlehrer (CMU), Y. Epshteyn (U. Utah), K. Salemeruiz (U,
Luxembourg), M. Darehbidi (GMU, Mech. Engr.), C. Torres (UTFSM, Chile),
D. Golovaty (U. Akron), D. Torrejon (Blacksky)

Adaptive biological networks:
joint with T. Oellerich (GMU, Math), M. Pierobon (GMU, Bio), L. Liotta
(GMU, Bio), R. Araujo (U. Queensland, Australia)

Quantum computing:
joint with M. Jarret (GMU, Math), R. Turner (GMU, Math), M. Tian (GMU,
Physics), X. Gitiaux (GMU, CS), I. Morris (GMU, Physics), E. Galvao
(Portugal)

Materials and biological projects supported by NSF CAREER grant DMS-1056821,
Simons Foundation grant and GMU Provost MDR grant. QC projects supported by
QSEC seed grants.
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Outline of the talk

1 Concept of graph entropy: mathematical definition

2 Concept of random walks and generalized master equations

3 Concept of data-driven dynamics identification without regularization

4 Crossing boundary into materials science

5 Crossing boundary into biology

6 Crossing boundary into quantum computing
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Ubiquitous networks

Materials networks

Biological networks

Quantum graphs
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Characterizing networks

1 Static properties: node statistics, connectivity, graph entropy, centrality
measures, distance between graphs, max-cut etc

2 Dynamics: random walks on graphs, graph flows etc.
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Characterizing networks

1 Static properties: node statistics, connectivity, graph entropy, centrality
measures, distance between graphs, max-cut etc

2 Dynamics: random walks on graphs, graph flows etc.

We will talk about entropy first.
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What is entropy?
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Faces of entropy

Entropy = measure of disorder. But what does it mean precisely?

It depends on the context. Three faces of entropy:

thermodynamic entropy, viewed as a continuum field,

entropy of mixing,

configurational entropy/ entropy of information/ network entropy

We will talk about these in the context of materials, biology and QC applications.
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Configurational entropy
The math entropy (configurational entropy), which is the negative of the Shannon
Entropy, is

Φ(p) =
∑

k=1...r

pk log pk , where
∑

k=1...r

pk = 1, pk = 0.

We always take 0 log 0 = 0. This entropy is supposed to suggest the randomness
present in a random variable ω defined on the integers Z with values in the events
X = {x1, . . . xr} having

Prob(ωi = xk) = pk , k = 1, . . . , r .

Now since

log
1

r
5 Φ(p) 5 0,

1 The minimum of Φ is achieved for the uniform distribution pk = 1/r for all k:
most random in the sense that the distribution does not distinguish among the
events xk

2 Max is achieved for a distribution where one of the pk = 1 and the remainder
are 0: the least random in the sense that it says that xk occurs and none other
does.
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Kullback-Leibler relative entropy
Kullback-Leibler Relative Entropy, defined to be

Φ(p‖q) =
∑

i=1,...,r

pi log
pi
qi
, p, q probability vectors.

Properties:

1 Φ(p‖q) = 0

2 Φ(p(n)‖peq) is decreasing for any probability matrix P and sequence of iterates
p(n), that is, for any Markov Chain

3 The diffusion equation is the Euler-Lagrange equation for the entropy.
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Characterizing networks

1 Static properties: node statistics, connectivity, graph entropy, centrality
measures, distance between graphs, max-cut etc

2 Dynamics: random walks on graphs, graph flows etc.
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Continuous Time Random Walks

The walker moves according to two parameters:
(1) Waiting times with pdf w(t) (2) Jump sizes with pdf µ(x).

Chapman-Kolmogorov type master equation:

p(s, t) = p0(s)ψ(t) +

∫ ∫
p(s − s ′, t − t′)µ(s ′)w(t′)dt′ds ′

Equivalent form in terms of the memory kernel

Φ̂(u) =
1− ŵ(u)

uŵ(u)
:

∫
Φ(t − t′)

∂

∂t
p(x , t′)dt′ =

∫
[p(x − x ′, t)− p(x , t)]µ(x ′)dx ′

becomes a Montroll-Weiss equation in Fourier-Laplace space

p̂(k, u) =
p̂0(k)(1− ŵ(u))

u(1− ŵ(u)µ̂(k))
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Uniform approach to fractional and regular dynamics

Φ(t) = cδ(t): Markov process, no memory

∂

∂t
p(x , t) = λ

∫
[p(x − x ′, t)− p(x , t)]µ(x ′)dx ′

Φ(t) 6= cδ(t): non-Markov process with memory kernel Φ(t).
For the choice of Φ̂(u) = 1

λu
β−1

∂β

∂tβ
p(x , t) = λ

∫
[p(x − x ′, t)− p(x , t)]µ(x ′)dx ′

Hence the process is Markov only in the case of exponential waiting times.
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Notations:

Eβ =
∞∑
n=0

zn

Γ(βn + 1)
is the Mittag-Leffler function, which interpolates between

the stretched exponential form and long-time inverse power law behavior.

Caputo fractional derivative definition

dβ

dtβ
f (t) =

1

Γ(1− β)

∫ t

0

f ′(τ)

(t − τ)β
dτ ,

for which

L
[ dβ
dtβ

f (t)
]

= uβ f̂ (u)− uβ−1f (0).
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Some results on generalized master equations

[Torrejon, Emelianenko: SIAP 2018]

Jump sizes Inter-arrival times

Homogeneous Poisson case, arrival rate λ
µ(r)µ(r)µ(r) ∂

∂t
p(x , t) = λ

∫
R µ(r)[p(x − r , t)− p(x , t)]dr

µ(r , t)µ(r , t)µ(r , t) ∂
∂t
p(x , t) = λ

∫
R µ(r , t)[p(x − r , t)− p(x , t)]dr

µ(r , t0)µ(r , t0)µ(r , t0)

{
p̄(x , t) = p(x , t) + 1

λ
∂
∂t
p(x , t)

∂
∂t
p̄(x , t) = λ

∫
R µ(r , t)[p̄(x − r , t)− p̄(x , t)]dr

Fractional case, w(s) = − d
ds
Eβ(−sβ)w(s) = − d

ds
Eβ(−sβ)w(s) = − d

ds
Eβ(−sβ)

µ(r)µ(r)µ(r) ∂βt p(x , t) =
∫
R µ(r)[p(x − r , t)− p(x , t)]dr

µ(r , t)µ(r , t)µ(r , t) ∂βt p(x , t) =
∫
R µ(r , t)[p(x − r , t)− p(x , t)]dr

µ(r , t0)µ(r , t0)µ(r , t0)

{
p̄(x , t) = ∂

∂t
p(x , t) + ∂1−β

t p(x , t) + p(x , 0)Φβ(t)

Dβ
t p̄(x , t) =

∫
R µ(r , t)[p̄(x − r , t)− p̄(x , t)]dr
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Comparison of the evolution of instantaneous fractional CTRW (left) against
delayed fractional CTRW (right) with jump kernel µ1(r , t; 0), starting from the
same Gaussian distribution.

Left graph keeps diffusing, while the right one undergoes a reversal in its trend (it
goes down initially then starts growing).
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Data-Driven Dynamics Identification Methods

Dynamic Mode Decomposition (DMD) 1,2

Sparse Identification of Nonlinear Dynamics (SINDy) 2,3 and variations

Koopman Operator Theory1,2

Conditional Gradient-based Identification of Nonlinear Dynamics (CINDy)4

Physics-informed neural networks 5

1J. Nathan Kutz et. al., “Dynamic Mode Decomposition: Data-Driven Modeling
of Complex Systems”, SIAM, 2016.

2Steven L. Brunton, J. Nathan Kutz, “Data-driven science and engineering”,
Cambridge University Press, 2019.

3S. L. Brunton et. al., “Discovering governing equations from data by sparse
identification of nonlinear dynamical systems”, Proceedings of the National
Academy of Sciences, vol. 113, no. 15, 2016.

4A. Carderera et. al. “Cindy: Conditional gradient-based identification of
non-linear dynamics – noise-robust recovery”, 2021.

5Raissi et al, 2019.
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Learning models from data

[Brunton et al, “Discovering governing equations from data by sparse identification
of nonlinear dynamical systems”, PNAS, 2016]
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Modified Approach6

Consider the dynamical system
d

dt
x = f(x)

Let X =
[
x(t1) . . . x(tm)

]T
be the time series data collected from the system.

Then, we can develop a library of candidate nonlinear functions Θ(X) constructed
from the data in X:

Θ(X) =
[
1 X X2 . . . Xd . . . sin(X) . . .

]
Now consider an approximation of f(x) using a generalized linear model:

fk(x) ≈ C(x)ωk C(x) =

[
Θ(x)
−Θ(x)

]
where ωk is ≥ 0.

6T. Oellerich, M. Emelianenko, ”Learning biological network dynamics from
data”, 2023
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Non-Negative Least Squares (NNLS)
In order to find the optimal ωk , we will utilize the time series data in the
Non-negative Least Squares (NNLS) algorithm7 as follows:

ωk = arg min
ω

′
k
≥0

∥∥∥ [ Θ(X)
−Θ(X)

]
ω

′
k − Ẋk

∥∥∥
2

where the top entries of ωk will correspond to positive coefficients in the recovered
dynamics and the bottom entries are the negative. Under certain conditions, this
problem is effectively related to

ξk = arg min
ξ
′
k
≥0

‖Ẋk −Θ(X)ξ
′
k‖2 + αITξ

′
k

Comparatively, SINDy solves the optimization problem:

ξk = arg min
ξ
′
k

‖Ẋk −Θ(X)ξ
′
k‖2 + α‖ξ

′
k‖1

where α weights the sparsity constraint.
Can be solved via active set method, gradient descent, etc.

7Slawski, Hein (2013): Consistency and sparse recovery without regularization
via NNLS
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Comparing NNLS and SINDy

dx1

dt
= 0.5− 0.75x2

dx2

dt
= −1 + 2x1 + 0.25x1x2
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Mathematical concepts so far

1 Entropy as a tool for characterizing disorder

2 Random walks as a tool for characterizing
dynamics

3 Data-driven sparse recovery of dynamics without
regularization

Now let’s step into the world of applications!
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Crossing into materials science

Polycrystalline materials are solids that are composed of many crystallites (grains)
of varying size and orientation. The variation in directions is called texture and can
be random or directed. Microstructure is the collection of grains with associated
orientations.
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Disorder in microstructures

Joint work with K. Saleme Ruiz [MSMSE 2018]

Entropy can be used to characterize microstructure disorder:

ηS(X ) = −
K∑

k=1

pk ln(pk)

p(X ): probability density of a certain random variable X .
X : areas, number of sides, orientations etc.
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Disorder in microstructures

Types of random perturbation of microstructure:
hexagonal, Normal-Voronoi, Weibull-Voronoi, Poisson-Voronoi, Lognormal-Voronoi.
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Mechanical response

Discrete Element Method (DEM) code was used to calculate stress-strain curves in
a quasi-static uniaxial compression loading test. 25 samples of each type of
perturbation were considered.
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Darker curves have smaller Shannon side-based entropy.

Observation:
Better elastic properties are linked to lower side-based Shannon entropy.
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Types of configurational entropy

Renyi entropy:

ηβ(X ) =
1

1− β ln
K∑

k=1

(pk)β

Shannon entropy:

ηS(X ) = −
K∑

k=1

pk ln(pk) = lim
β→1

ηβ(X )

What is the effect of parameter β on the microstructure characterization?
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Comparing microstructures

Jensen-Renyi divergence: distance between microstructures X and Y :

DistJR(X ,Y ) =

√
ηβ(pZ )− 1

2
ηβ(pX )− 1

2
ηβ(pY )

where pZ = 1
2
pX + 1

2
pY .

We consider 2 types of statistics pX :

1 Size-based entropy (X is the grain area)

2 Side-based entropy (X is the number of sides)
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Yield stress shows a clear difference between side- and size- based entropies.

β = 1
better
for sides

β = 2.5
better
for sizes

Size-based Sides-based
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Observation:
For size-based entropy measures, β = 2.5 better correlates with elastic response
than β = 1.
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Microstructure for different configurations

NIST AM Benchmark LPBF test data for 15-5 stainless steel

Leg 7 (thick)
Longitudinal orientation

Leg 7 (thick)
Transverse orientation

Leg 8 (thin)
Transverse orientation
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AM samples: residual strain and entropy

Entropy measured from NIST benchmark samples:
Sample η roundness η circularity

L7 (thick) LONG 2.1162 2.2452
L7 (thick) TRANS 2.1819 2.2580
L8 (thin) TRANS 2.1499 2.2375

Open questions:

Which microstructure properties best
correlate with residual stresses and strains:
size/shape distributions, entropies?

How does the melt pool
geometry/characteristics affect stress/strain
distribution?

How sensitive are entropy calculations to the
quality of the segmentation?
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Entropy for smart materials design

1 Different types of microstructure entropies correlates with different materials
properties

2 We can use this concept to reverse engineer microstructures with desired
mechanical response
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Grain growth
Grain growth is the increase in size of grains (crystallites) in a material at high
temperature. This occurs when recovery and recrystallization are complete and
further reduction in the internal energy can only be achieved by reducing the total
area of grain boundary.
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Texture modeling in 2D

Types of collective variables:

1 number of sides of a grain (n)

2 relative area of a grain (S)

3 dihedral angle (φ)

4 misorientation (β = ∆α)

Here we focus on texture, so relevant distributions are:

ρn(β, t): MDF, misorientation distribution function (number-weighted pdf)

ρl(β, t): GBCD, grain boundary character distribution (length-weighted pdf)

What are the mechanisms that control the development of these distributions?
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Entropy theory of materials texture

(Joint work with D. Kinderlehrer, Y. Epshteyn, E. Eggeling, K. Barmak, S. Ta’asan,
R. Sharp)
[Barmak et al 2011-2015]

The total surface energy of the system: E [ρ] =
∫
γ(β)ρ(β, t) dβ.

Add a configurational entropy term to get the free energy:

Fσ[ρ] = E [ρ] + σ

∫
ρ(β) log(ρ(β)) dβ,

where σ is a temperature-like parameter.
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Entropy model
Mass transport paradigm (Benamou and Bernier, 2000): Given two probability
densities f and f ∗, Wasserstein distance d(f , f ∗) between them is given by

1

τ
d(f , f ∗)2 = inf

∫ τ

0

∫
Ω

v 2fdψdt

over deformation paths f (ψ, t) subject to

ft + (cf )ψ = 0, f (ψ, 0) = f ∗(ψ), f (ψ, τ) = f (ψ)

Variational principle:

µ

2τ
d(ρ, ρ∗)2 + Fλ(ρ) = inf

η
{ µ

2τ
d(η, ρ∗)2 + Fλ(η)}

Can be solved using implicit scheme obtained by setting ρ∗ = ρk−1, ρk = ρ.
We can recover GBCD ρ as

ρ(α, t) = lim
τ→0

ρτ (α, t)

Hence it satisfies Fokker-Planck equation [Jordan,Kinderlehrer,Otto 1998]:

∂ρ

∂t
=

∂

∂α
(λ
∂ρ

∂α
+

dγ

dα
ρ)
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Entropy-based model validation

Minimization of Fλ gives a Boltzmann distribution (stationary solution to
Fokker-Planck): ρλ(α) = e−γ(α)/λ, where Zλ =

∫
Ω
e−γ(α)/λ.

Question: does it match the distribution obtained in simulation?
Relative entropy approach: Seek λ s.t. relative entropy Φλ(η) = Fλ(η) + λ logZλ
exhibits an exponential decay.

K0.6 K0.4 K0.2 0 0.2 0.4 0.6

0.5

1.0

1.5

2.0

(1) There is a unique such λ
(2) The distribution for this choice of λ precisely matches the simulation result!
[Barmak, Eggeling, E, Epshteyn, Kinderlehrer, Taasan, Sharp, PRB (2011)]
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Entropy theory for texture in 2d

Given interfacial energy γ(α), we compare Boltzmann distribution for the special
value of parameter λ with simulation:

Compute relative entropy - it is exponentially decaying for a unique value of λ

Compute Boltzmann distribution for the same λ

Compare with the stationary GBCD

Compelling evidence: this method yields a good fit in 2d.
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Random walk model

What we know:

1 Coarsening process contains discontinuities (jumps) created by topological
reconfigurations

2 The rate with which these events occur (arrival rate λ) goes down over time

3 Knowing the arrival rate, we can write the evolution equation for the
mesoscale statistics

Idea:

Use non-homogeneous Poisson-type jump process to describe evolution of the
statistics
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Random walk model

(Joint work with D. Torrejon, D. Golovaty [J. Ellip. Parab. Eq. 2016])

Master equation for the random walk in misorientation space:

∂ρ(β, t)

∂t
= λ(t)

∫
(ρ(β −∆β, t)− ρ(β))µ(∆β, t)d(∆β)

Parameters: jump kernel and waiting times distribution (estimated from
simulations).

Results:
(+) Able to capture correct evolution in 1D,
(±) Reproduces 2D statistics up to a certain stage, fails to capture stagnation
(−) Needs to have the jump and waiting times pdfs
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Hierarchy of mesoscale models:

Entropy model: energy gradient flow description (Kinderlehrer, E., Epshteyn,
Liu et al)
Works for certain types of energy, one parameter σ

∂ρ

∂t
=

∂

∂β
(σ
∂ρ

∂β
+

dγ

dβ
ρ)

Kinetic model: most granular description of collisions (E., Yegorov) Works for
arbitrary energy, parameter λ

ρn(β, t)+N(t)
∂ρn(β, t)

∂N(t)
= −λ(t)

3
(P s,+(β, t)−P s,−(β, t))+

1

3
Pd

1 (β, t)+
2

3
Pd

2 (β, t)

Random walk model: mean field approximation of collisions (E., Golovaty,
Torrejon et al)
Works with arbitrary energy, parameters λ and µ

∂ρ(β, t)

∂t
= λ(t)

∫
(ρ(β −∆β, t)− ρ(β))µ(∆β, t)d(∆β)

Remaining challenges:

Formal derivation of the continuum limits for granular models

Generalization to 3D

Can we account for changes during AM processing?
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Entropy and random walk theories in polycrystals

1 Allow to describe evolution of the microstructure

2 Links microstructure to mechanical properties

Many questions remain about the mechanisms responsible for this behavior.

Simulations are extremely time consuming: see our GPU-based version in [Sazo
2019].
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Crossing into biology
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Protein interaction network

Biological networks are graph structures.
For instance, protein interaction network may be represented as a weighted graph
with vertices representing proteins and with weights

pij =
wij∑
k wik

,

where wij = 1
2
(1 + Cij) are the transformed Pearson correlation coefficient Cij of

gene expression between genes i and j in the same phenotype.
Probability flux between nodes i and j is given by

Eij = γ

∞∑
L=1

αLp
L
ij ,

where PL denotes flux on a path of length L.
Network entropy of a node i is:

Si = − 1

log ki

∑
j

pij log pij ,

where ki is the degree of gene i , assumed to be ≥ 2.
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Cancer increases entropy

Below local entropy distributions are shown for high-degree nodes.

[West et al, Sci Rep 2012]

Question: entropy grows as a consequence of the loss of local connectivity. Which
nodes are critical in this process? Can we target them in drug therapy?
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Suppose we have a network comprised of N nodes, labeled
~P = [P1,P2, . . . ,PN ]T ∈ P. Consider a time dependent input being applied to this

system, denoted ~U(t) = ~U ∈ U. The resulting dynamical system has the form:

~P ′ = ~F ( ~U, ~P) (1)

where fi models the set of activation/de-activation reactions for the respective

node. We will use ~F = [f1, f2 . . . fN ]T to denote the vector of right hand sides and

h(~P) =
∑N

i=1 hiPi as the output.

Let us consider the first case, det(D~P
~F ) 6= 0.

Theorem[Araujo, Nature Comm. 2018]

A biochemical system for which det(D~P
~F ) 6= 0 at the system’s steady state will

exhibit homeostasis if
hCTD~U

~F = 0

at steady state. Here h = [h1, ..., hN ] is the vector of coefficients which determine
the weighted contribution from each node to the total output of the system and C
denotes the cofactor matrix of D~P

~F .
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Adaptation condition generalized to singular systems

Theorem [Oellerich, Emelianenko, Araujo,
Liotta, 2020]

A biochemical system for which det(D~P
~F ) = 0 at the

system’s steady state will exhibit homeostasis if

hV1Σ−1
1 W T

1 D~U
~F = 0

at the system’s steady state. Here, V1,Σ1, and W1 are
derived from the full singular value decomposition of
D~P

~F .
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Adaptation is fragile
Hypothesis: Adding certain connections to the network leads to the loss of adaptive
behavior.

BA

CD

CD

Input

Output
fA = dA

dt
= k1D − k2A

fB = dB
dt

= k3IA− k4B + a1D

fC = dC
dt

= k4B − k5C · D

fD = dD
dt

= k6 − k5C · D + a2B

(2)

This system fails to adapt.
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Network entropy in biology

Entropy plays a big role in the study of biological networks:

1 Cancer mutations alter network connectivity

2 Entropy is one of the hallmark features of the biological network that may be
used for predicting diseases and detecting anomalies in the data

3 Network entropy and thermodynamic entropy descriptions need to be explored

4 Connection with thermodynamics and gradient flow theory is the key to
uncovering adaptation mechanisms
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Discovering Dynamics for Biological Systems
We want to:

Recover the dynamics from biological data

Recreate network structure from dynamics

Known problems:

Most ML methods do not work well with small noisy datasets

Hyperparameters and regularization parameters are hard to work with

Rational functions are typically present in biological models
(Michaelis–Menten kinetics, etc.)

May not have access to derivative information or it may not be accurate
enough

Interested in certain properties of dynamics:

Conservation Laws ([Oellerich/E.., 2023])

Special network structures, such as compounds in the network [Oellerich/E..,
2021]

Adaptation properties ([Tang et. al., 2016], [Araujo et. al., 2018], [Oellerich
et. al., 2021])
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Workflow for identifying conservation laws from data

ẋ(t) = f(x), g(x) = C ≈ Θ(x)Tξ (3)

where

Θ(x) = [θ1(x),θ2(x) . . .θp(x)]T ∈ Rp×1, ξ = [ξ1, . . . ξp]T ∈ Rp×1 (4)

0 =
d

dt
C =

d

dt
g(x) =

(
dΘ

dt

)T

ξ = Γ(x, ẋ)ξ ⇒ Γ(X, Ẋ))ξ = 0 (5)
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Workflow for optimizing the choice of the library using
data
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Identifying the right library
Poly Order Sine Ln len(Θ) δ count ‖Γξcons‖2

1.0 0 0 3 NaN 0 NaN

2.0 0 0 9 NaN 0 NaN

3.0 0 0 19.0 1.8648e-12 5.0 4.3008e-13

1.0 0 1.0 6.0 5.4734e-3 1.0 7.786e-14

2.0 0 1.0 12.0 1.6257e-11 1.0 2.0163e-15

3.0 0 1.0 22.0 1.0229e-12 6.0 3.4132e-13

1.0 1.0 0 15.0 4.257e-12 1.0 3.7476e-13

2.0 1.0 0 21.0 9.6393e-13 6.0 7.0661e-13

3.0 1.0 0 31.0 6.9411e-13 13.0 3.1455e-13

1.0 1.0 1.0 18.0 1.1416e-12 2.0 3.2407e-13

2.0 1.0 1.0 24.0 2.32e-12 8.0 5.2193e-13

3.0 1.0 1.0 34.0 5.8818e-13 16.0 7.3631e-13

ẋ = −k1x + k2yS

ẏ = k1x − k2yS − k3y

Ṡ = −k2yS

d

dt
(x + y − k3

k2
ln(S)) = 0
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Crossing into quantum computing
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Quantum computing concepts
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Quantum information science notions

In classical world (configurational entropy):

S(p) =
∑

k=1...r

pk ln pk , where
∑

k=1...r

pk = 1, pk = 0. (6)

In quantum statistical mechanics (von Neumann entanglement
entropy):

S = −tr[ρ ln ρ],

where ρ is the density matrix. Using eigendecomposition of the form
ρ =

∑
j ηj |j〉〈j |,

S = −
∑

ηj ln ηj

In this context, entropy measures departure of the system from pure
state (amount of mixing of the quantum state).
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Quantum vs. classical information science
In classical world (Renyi entropy):

ηβ(X ) =
1

1− β
ln

K∑
k=1

(pk)β

Shannon entropy is the limit of Renyi entropy:

ηS(X ) = −
K∑

k=1

pk ln(pk) = lim
β→1

ηβ(X )

In quantum world (von Neumann entanglement entropy):

Sβ(ρA) =
1

1− α
ln tr(ρβA)

von Neumann entropy is the limit of Renyi entropy:

S = −
∑

ηj ln ηj = lim
β→1

Sβ
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Quantum circuits for the multi-state SWAP test

How does one implement entropy/overlap calculation on an actual
quantum computer?

|0〉 H H

|φ1〉

|φ2〉

Figure: SWAP test for 2 states.

|+〉

|+〉

|+〉

|φ1〉

|φ2〉

|φ3〉

|φ4〉

Figure: SWAP test for 4 states.
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Recursive construction for n states

Joint work with M. Tian, X. Gitiaux, I. Morris

Theorem (Gitiaux, Morris, Emelianenko,
Tian 2021)

Let n = m(m− 1). Then, there exists a unitary Um that
maps

Um : ⊗ |0〉dm ⊗m
i=1 |φi 〉 →

n∑
ij=1

|ij〉 |φiφjGij〉 ,

where Gij is a garbage state and dm = O(lnm) is the
number of ancillaries. U can be computed by a
quantum circuit with O(m) controlled swap gates. In
comparison, pairwise implementation needs O(m)
ancillaries, O(n) controlled SWAPs and is destructive.

Maria Emelianenko Faces of entropy Nov 14, 2023 66 / 69



Random walks on graphs
Classical random walk on a graph: a Markov process with
infinitesimal generator matrix M with jumping rate γ, defined as

Mab =


−γ, a 6= b, a and b connected by an edge
0, a 6= b, a and b not connected by an edge
−kγ, a = b,where k is the degree of a

Evolution is given by

dpa(t)

dt
= −

∑
b

Mabpb(t),

where pa(t) is the probability of being at vertex a at time t.
Quantum walk satisfies Schrödinger equation

i
d

dt
〈a|ψ(t)〉 = −

∑
b

〈a|b〉 〈b|ψ(t)〉

with a Hamiltonian H, where 〈a|ψ(t)〉 is the amplitude of being at
vertex a at time t. An analogue of the above classical walk: quantum
Hamiltonian with matrix elements

〈a|H|b〉 = Mab
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Quantum advantage of quantum walk

Example: glued tree graph with 2n+1 + 2n − 2 vertices [Childs et al,
2002]:

Classical walker needs exponential time to get from ’entrance’ to ’exit’:
number of vertices in column n contains 2n vertices
Quantum walker is able to choose all directions simultaneously: reduces
to 2n + 1-dimensional subspace of the original space (linear time).
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Thinking conceptually helps transcend boundaries
Concept of entropy

1 Entropy is a measure of disorder and is
used in many contexts

2 Different entropy forms may correlate with
different aspects of the physical/biological
processes

3 Quantum entanglement can be measured
using entropy, but circuit optimization
may be nontrivial

Concept of random walks

1 Can help characterize dynamics

2 Can be quantum and fractional

3 Quantum walk may produce exponential
speedup comparing to classical case

The search for hidden mechanisms and connections is far from
complete.
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