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Introduction

Many-particle or multi-agent systems are used in a widespread
range of applications

Plasmas: Particles are ions or electrons.

Astrophysics: Particles are dark matter particles, galaxies or
galaxy clusters...

Fluids: Point vortices, suspensions...

Bio-mechanics: Medical aerosols in the respiratory tract,
suspensions in the blood...

Bio-Sciences: Collective behaviors of animals, swarming or
flocking, but also dynamics of micro-organisms, chemotaxis,
cell migration, neural networks...

Social Sciences: Opinion dynamics, consensus formation...

Economics: Mean-field games...
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Biological neurons

Figure: Credits: CNRS Bordeaux, France; 2D reconstruction of rat
hippocampus, marked for cytoskeleton protein.
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Our goals

We want to derive some simple, continuous model to describe the
behavior of networks of biological neurons at large scales, as
® we typically have a large number of neurons, up to 8.6 10'°

neurons in the human brain for example;

® cach neuron has a complex map of interactions with other
neurons, with an average of 6,000 — 7,000 synaptic
connections.

Some sort of mean-field approximation can be expected.
But classical mean-field tools cannot be applied because each
neuron has a distinct map of connections.
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Integrate and fire for a single neuron

One of the simplest model for a single neuron is a straightforward
spike dynamics of the type originally proposed by Lapicque in
1907. Between spikes, the membrane potential is assumed to
increase with a straightforward ODE (or SDE)

dVv
i b(V(t)).

The neuron has a certain probability to spike
P(spike between t and t + dt) ~ v(V/(t)) dt.

In that case the potential of the neuron is reset at V = 0 at the
same time.

There exists many, many variants of such models, for example with
stochastic terms, more complex dynamics, more intricate spiking
rules...
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Integrate and fire for a single neuron

One of the simplest model for a single neuron is a straightforward
spike dynamics of the type originally proposed by Lapicque in
1907. Between spikes, the membrane potential is assumed to
increase with a straightforward ODE (or SDE)

dViy = b(V(t)) + o dW,.
The neuron has a certain probability to spike
P(spike between t and t + dt) ~ v(V/(t)) dt.

In that case the potential of the neuron is reset at V = 0 at the
same time.

There exists many, many variants of such models, for example with
stochastic terms, more complex dynamics, more intricate spiking
rules...
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How to connect the dynamics of each neurons

For some of the simplest integrate and fire model, a neuron #i
only interact with another neuron #j when the neuron #i fires:

For all j connected to i, V; jumps by o wj;,

at the exact time when / fires, and where wj; are the synaptic
connections.

® The w;j; can be positive or negative with corresponding
excitation or inhibition between neurons.

® The wj; may all be completely different for every pair of
neurons.

® We are not even taking synaptic plasticity into account. In
fact the wj; should evolve in time.

® We are seemingly very far from the fully symmetric case of
identical interacting charged particles...
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Modeling is a complex issue

The previous discussion obviously does not do justice to the
complexity of the modeling of neuron dynamics.

The dynamics of each neuron involve complex biochemical
processes, with temporal and spatial dependencies. Their reduction
to a set of simple rules for multi-agent systems has consequences...
For example while different Hodgkin-Huxley type of models may
capture better the individual dynamics of neurons, they seem to
have more difficulty with the interactions between neurons (spikes
being not as well defined). See for example Gerstner-Kistler,
Izhikevich...

However recent advances in medical imaging have also provided
more accurate information. For example the full connectome of the
Drosophilia was recently obtained.
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Scaling in biological neuron networks

® Mammalian brains contain between 102 — 10! neurons
(86 - 10° actually in humans). Of course models typically
applied only to sub-domains... — N >> 1.

® In the human brain, each neuron has on average 7000
synaptic connections to other neurons
— sup; j Wi ~ 1073 -107% << 1.
— The map of synaptic connections is only sparsely connected
but each neuron still interact with a large number of other neurons.
The large N makes it interesting, for both analytical and numerical
studies, to derive simplified models at macroscopic scales.
To summarize, we make to following assumption extending the
classical mean-field scaling

supZ]Wy\+supZ|Wﬁ]§C, max |wjj| = 0 as N — oo.
i i 5 iJ
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Biological neurons
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Figure: Part of Figure 2 in Hulse et al 21'. Recent progress in
experimental biology that makes detailed connectome for large neuron

networks available.
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A mean-field limit for neural networks?

The advantage of mean-field approximations for the analysis or
simulations of large neuronal networks has long been recognized:
See Omurtag-Knight-Sirovich, Renart-Brunel-Wang, Mattia-Del
Giudice,...

Neural field models for example have proved enduringly popular for
this reason, see for example Amari, Freeman , Griffith, Da Silva et
al, Nunez, Wilson-Cowan in the 70s...

But neural field models also face strong criticism as neurons that
are spatially close may still have completely different synaptic
connections. And synaptic weights play a critical role for the
individual dynamics of each neuron in the network.

This leaves the question of some sort of continuum limit fully open.
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A novel statistical notion

We propose a novel notion of the statistical distribution in the
system, directly from the joint law and connection maps.

No additional assumption is needed for the w;j; outside of the
natural scaling.
Those empirical observables are indexed by trees.

For the trivial tree with only the root vertex, the observable is
the classical 1-particle distribution.

The family could be extended to Include other well-known
statistical objection, such as the 2-particle distribution.

At the limit, observables provide a self-contained macroscopic
description of the system: convergence of observables initially
implies convergence of observables at any later time.
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A statistical point of view

Instead of looking at trajectories, we consider the joint law fy at
time t.
For the integrate and fire models, we have

fu(t, vi, ..., vy) =probability density of the membrane potentials
Vi(t),..., Vn(t) at time t.

It contains most of the statistical information on the system but
not all the information: Correlations in time are lost and it may be
difficult to reconstruct trajectories of the system.
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A new notion of observables for integrate and fire models

Denote the marginal of the joint law fy of the i1,..., i,-th neurons

f,(}""’i”(t, Vi,..., Vn)

= </RN-H fn(t,zi, ..., zn) Hj#il,.‘.,indzj>

We then define the family of observables indexed by trees T

z,-k:vk,kzl,...,n

TN(T, w, fN)(t, Vi, ..., V|T|)
N

1 e
N Yo I w7 (),

i1,...,i\7—|=1 (j,k)GT

where the tree T represents a possible map of interactions
starting from neuron /3.
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Marginals in the simplified case

In the case of symmetrical systems with indistinguishable agents,
the observables reduce to the classical marginals that have an
immediate physical interpretation. For our simplified setting

fk(t',Xl7 R ,Xk) = Law at time t of Xq,..., Xk.

For example fi is the 1-particle distribution, while f» contains
information about correlations between particles.
The various marginals are nested in a natural hierarchy

fk(t,Xl, ... ,Xk)

= /d fr1(t, X5 oy Xky1) dXkg1
R

Our new observables extend this physical interpretation to
non-identical agents.
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A tree indexed hierarchy for integrate and fire models

In the setting of integrate and fire models, we do not have a closed
hierarchy but we are still able to derive an approximate hierarchy
that is now indexed by trees where we denote v = (v1,...,Vv|7|)
and z = (z1,...,27))

8tTN(T)(t, Viyeony V‘T|)
Tl

02
-y { [ — 8\, (b(va)Tn(T)(t,.)) + 785,77'N(T)(tv )

n=1

(T ) + 5o(vn>( [ (T2 dz,,>

Vk#n, zk:vk:|

— 0y, [/ v+ (T + n)(t, v, vi7)41) dVlTH} } + remainders.
R
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A tree indexed hierarchy for integrate and fire models

8tTN(T)(t, Vi, eons V\T|)
|T|

52
- Z { [ A, (b(vn) i (T)(2, ) + 785,,7_N(T)(t, )

(T ) + 5o<vn>< [ a2 dz,,>

Vk#n, zk:vk:|

—0,, [/ v+ (T + n)(t, v, vi7)41) dv|T+1} } + remainders.
R

As before the equation on 7y(T) depends on all observables at
the next level: All trees T + n where we add a leaf on vertex #n.
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The main steps in the proof

We want to obtain direct estimates on the observables 7y (T)
for integrate and fire, and the marginals f; for charged
particles.

This will also allows to derive macroscopic descriptions by
passing to the limit in the hierarchies.

However a major difficulty is that each equation on the
hierarchy depends on observables at the next level.

At the technical level, this is resolved through the introduction
of new commutator estimates that are compatible with weak
convergence and are uniform in the dimension.
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Mean-field limit for integrate and fire models

We recall that our mean-field scaling is

supZ|W,~j\+supZ|Wj;|§C, max |wjj| =0 as N — oo.
i . j ; IN]

Then there exists a notion of limiting synaptic “kernel” w(&, () in
a complex measure-valued space Lgo./\/lg N Lz’o/\/lg such that the
limit of the observables can be obtained through a mean-field
equation on an extended density f(t, v, &)

of + 0, ((b(v) + S(t, &) F) = 022(93)‘ —v(v)f,

1 [ee]
W /O v(z) f(t,2,€)dz, (1)

S(t,6) = // f(t,2,¢) dz w(€, dC).

f(t,v=0,¢) =
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A theorem for integrate and fire
Define the limiting observables through

TOO(Tv w, f)(t,Z) ::/ n(l,m)eTW(glagm)

[0, 1]IT
f®|T‘(ta 21761, .. -;Z|T‘,£‘T‘)d§1 e délT‘

Theorem
Assume b, v are bounded and smooth, that f is a smooth, and
fast decaying solution to (1) for w € Lg°M¢ N LZ° M, and that

™w(T)(t =0) = 7oo(T)(t =0), weak—= in measure, for all trees T.
Then for any t > 0,
Tn(T)(t) = Too(T)(t), weak — % in measure, for all trees T.

In particular we have convergence of the 1-particle distribution.
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Conclusions

It allows the rigorous derivation of a sort of neural field model
but the limiting synaptic kernel cannot be interpreted in
spatial terms.

Novel, straightforward quantitative estimates with minimal
assumptions on the interaction kernel.

Fits with the expected scaling of molecular chaos where
fi, = f®¥ but does not strictly require independence.

Many open questions remain, including whether it is possible
to derive some notion of mean trajectory or how to
incorporate learning in the model.
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