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Computational Problems 
in Number Theory

Main computational problems for number fields : 

Compute
- discriminant, ring of integers
- Galois group of Galois closure
- class group, unit group

Over the integers:
- Compute gcd’s
- Primality testing
- Factoring 
- Solving Pell’s equation 
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Quantum alg for constant degree in ‘05

Arbitrary degree case in ‘14



Exponential Speedups by 
Quantum Algorithms

- Unit group, Class group (Hallgren 05, Schmidt/Vollmer 05)
- Solve Principal ideal problem (PIP)

-Breaks Buchmann-Williams system
- Compute certain unramified field extensions of number fields 
(E.-Hallgren ’10) 
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Function field analogues: Also have efficient algorithms (E-Hallgren ’12)

Arbitrary degree case: (E-Hallgren-Kitaev-Song 14)

- Factoring, discrete log (Shor ’94)
- Pell’s equation (Hallgren ’02)

Quantum algorithms for number theoretic problems:

In constant degree number fields can compute:



Other Source of 
computational problems:
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Number-theoretic problems related to security of 
public-key cryptosystems.

In public key cryptography: parties can communicate 
privately without agreeing on any secret in advance. 

Example: RSA



Public-Key 
Cryptography
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Hard problems from 
Number Theory

Public-key 
cryptosystemsIn public-key setting: 

All known 
constructions rely on 
hard number 
theoretic problems.



Number Theoretic 
Problems in Cryptography 
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System underlying hard? problem

RSA Factoring

Elliptic curve cryptography Elliptic curve discrete log

Ring-LWE SVP in ideal lattices

Supersingular isogeny-based 
cryptography

Computing isogenies 
between curves 

Soliloquy Short generator PIP



Classical versus Quantum 
Algorithms
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Elliptic curve 
addition

Modular arithmetic
Classical poly-time

Factoring

Discrete log
Quantum poly-time

Open
SVP

SVP in ideal lattices
Isogenies between elliptic curves

Endomorphism rings
of supersingular elliptic curves

Unit group

Class group Principal Ideal
Problem (PIP)

Endomorphism rings
of ordinary elliptic curves

Isogenies between elliptic 
curves with torsion info



Approach for Quantum 
Algorithms for discrete log, 

factoring
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Give classical reductions from these problems to Hidden 
Subgroup Problems (HSPs)

Show that the HSP has an efficient quantum algorithm.



G abelian, have quantum algorithms
• Factoring N:  
• Discrete log: 
• Pell’s equation: 

G = ℤ
G = ℤp−1 × ℤp−1

G = ℝ

The Hidden Subgroup 
Problem (HSP)
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Given  that is constant and distinct on cosets 
of a subgroup H. Find H.

g : G → S

The structure of G determines 
   how hard the problem is.

Examples:



Post-quantum 
Cryptography

Good choices: ??? Have to study the problems 
that are open, like SVP and computing isogenies 
between elliptic curves. NIST competition aims 
to do this.
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Goal: develop public-key cryptographic algorithms 
that are secure against quantum computers.

Bad choices: RSA, Elliptic Curve Cryptography, 
systems based on special type lattices (Soliloquy)



NIST Competition for Post-
Quantum Cryptosystems

• Remaining systems are: code-based, lattice-based and 
supersingular isogeny-based.
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• Goal: Replace currently-used cryptosystems because 
RSA and ECC are broken by quantum computers.

• 69 submissions were accepted in round one in November 2017.

• 8 submissions broken by end of 2017, 22 submissions 
broken by end of 2018.

• 26 submissions advanced to round 2.



Lattices and systems 
based on them

Given  
 
 
 
 
 

Infinite number of bases for a lattice
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Prototype of Lattice 
Problem

1. L has infinitely many bases, so in general can’t read off 
short vectors from lattice basis.
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Problem (Shortest Vector Problem, SVP). Given vectors 
 generating a lattice , 

compute the shortest nonzero vector in L.
b1, …, bn ∈ ℝn L = {∑ aibi : ai ∈ ℤ}

3.    In Soliloquy: To improve efficiency, several assumptions were 
made.

2.    Can base cryptosystems on SVP, but: much slower than RSA.



Assumptions for Improving 
Efficiency of Lattice-based 

Systems

There is an efficient quantum algorithm for SGPIP.  
So: these systems are broken by quantum computers.

15

3. Same setup as in (2.), but assume also that the generator  for I is 
short. Known as Short generator principal ideal problem (SGPIP).

α

1. Assume SVP is hard if L comes from an ideal I in the ring of integers 
in a number field. (L=ideal lattice).

2. Assume: problem still hard if, in addition, I is a principal ideal. I.e. 
.I = (α)

Several constructions are based on SGPIP: Soliloquiy, multilinear 
maps.



How to compute the 
Short Generator

1) Compute the unit group
2) Solve the PIP Problem  

to get Log    s.t. 
3) Solve BDD in the 

 unit lattice to get Log 
4) Output 

β I = (β)

ε

Log α = Log β − Log ε

Input: ideal  in a number fieldI
Output:  with  short and 

.
Log α α

I = (α)

Log �

Log ↵

Log "

The Unit Lattice Log 𝒪*

∙

∙



A quantum algorithm 
for the unit group

Step (1) is the following theorem:

Theorem (E-Hallgren-Kitaev-Song): Let K be a 
number field (i.e. a finite extension of ) of 
arbitrary degree, and let  be its ring of integers. 
There is a polynomial time quantum algorithm 
for computing the unit group .

Unit group is too big to write down generators. 
‘Computing the unit group’ means writing down 
a basis for the lattice Log .
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Using elliptic curves for 
Post-Quantum Crypto
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New proposal: 

Traditional elliptic curve cryptography:
- Fix one curve and use the group law.
- Assume discrete log is hard on this group.
Shor’s quantum algorithm breaks these.

Use an exponentially large set of elliptic curves and 
 the isogenies (maps) between them.

Elliptic curve: E : y2 = x3 + ax + b a, b ∈ 𝔽q

• Points are  satisfying above equation and extra point (x, y) ∞

• Points form an abelian group
• Have several cryptosystems based on isogenies. Only 

submission to NIST competition was SIKE-SIDH.



Example: SIDH Key Exchange 
(Supersingular Isogeny Diffie-Hellman)
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Alice’s secret: ker(α) = ⟨A⟩

Bob’secret: ker(β) = ⟨B⟩

 = supersingular elliptic curve defined over .E 𝔽p2

1. Alice: chooses secret subgroup  of , sends  to Bob.A E E/A
2. Bob: chooses subgroup  of  and send  to Alice.B E E/B

3. Shared secret: elliptic curve .E/⟨A, B⟩

Broken, Summer 2022

Joint secret: E/⟨A, B⟩



Breaking SIDH
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Castryck-Decru (July 2022) Maino et al. (August 2022) Robert (August 2022)

Vulnerability of SIDH: have to reveal evaluation  
 for certain points  on E. α(P), α(Q) P, Q

Idea for break: Recover  from , where  is 
an isogeny between products of curves. 

ker(α) ker( f ) f

(Same for )β .

Open question:

f : C × E′ → E × X

Are the other cryptographic constructions based on 
isogenies still secure ?


