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Over the integers:

- Compute ged'’s

- Primality testing

- Factoring

- Solving Pell’s equation

Main computational problems fOI’ number ﬁelds .

Compute K = Q(0)
- discriminant, ring of integers ;
- Galois group of Galois closure

Q

- class group, unit group



Given number field:
Q(0) 2) Class group =
Ring of ’ Ideals mod Principal 1deals

Integers

Ideals 11 Is I3

3) Principal 1deal problem
Compute:

1) Unit group OF

Invertible elements of O Quantum alg for constant degree in ‘05

o — «

Arbitrary degree case in ‘14



Quantum algorithms for number theoretic problems:

- Factoring, discrete log (Shor '94)
- Pell's equation (Hallgren '02)

In constant degree number fields can compute:

- Unit group, Class group (Hallgren 05, Schmidt/Vollmer 05)
- Solve Principal 1deal problem (PIP)

-Breaks Buchmann-Williams system
- Compute certain unramified field extensions of number fields

(E.-Hallgren '10)

Arbitrary degree case: (E-Hallgren-Kitaev-Song 14)

Function field analogues: Also have efficient algorithms (& Hallgren '12)
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Number-theoretic problems related to security of

public-key cryptosystems.

In public key cryptography: parties can communicate
privately without agreeing on any secret in advance.

Example: RSA



In public-key setting:

All known

constructions rely on
hard number
theoretic problems.

Public-key
cryptosystems

Hard problems from
Number Theory



NUMBER THEORETIC
PROBLEMS IN CRYPTOGRAPHY

System underlying hard? problem

RSA Factoring

Elliptic curve cryptography | Elliptic curve discrete log

Ring-LWE SVP in ideal lattices
Supersingular isogeny-based Computing isogenies
cryptography between curves

Soliloquy Short generator PIP




SVP Endomorphism rings
Open SAPE e T e of supersingular elliptic curves

[sogenies between elliptic curves

Factoring
Endomorphism rings Unit group

. of ordinary elliptic curves
Quantum poly-time R

Class group Principal Ideal

Discrete 10g Problem (PIP>

Elliptic curve

20 [sogenies between elliptic
addition

Classical poly-time curves with torsion info

Modular arithmetic



Give classical reductions from these problems to Hidden

Subgroup Problems (HSPs)

Show that the HSP has an efficient quantum algorithm.



Given g : G — S that 1s constant and distinct on cosets

of a subgroup H. Find H.

The structure of G determines

how hard the problem 1s.
H
Examples:
g+ H G abelian, have quantum algorithms

® Factoring V: G =Z
® Discrete log: G = L, Sl
® Pell’'s equation: G = R
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Goal: develop public-key cryptographic algorithms

that are secure against quantum computers.

Bad choices: RSA, Elliptic Curve Cryptography,
systems based on special type lattices (Soliloquy)

Good choices: ??? Have to study the problems
that are open, like SVP and computing 1sogenies
between elliptic curves. NIST competition aims

to do this.
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Goal: Replace currently-used cryptosystems because

RSA and ECC are broken by quantum computers.

69 submissions were accepted in round one in November 2017,

8 submissions broken by end of 2017, 22 submissions
broken by end of 2018.

26 submissions advanced to round 2.

Remaining systems are: code-based, lattice-based and
supersingular 1sogeny-based.
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LATTICES AND SYSTEMS
BASED ON THEM

s Given by,...,b, € R"

o (0] o
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.

s¢ Infinite number of bases for a lattice
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Problem (Shortest Vector Problem, SVP). Given vectors
by, ....b, € R" generating a lattice L = { 2 ab,:a;, € Z },

compute the shortest nonzero vector in L.

1. L has infinitely many bases, so in general can’t read oft
short vectors from lattice basis.

2. Can base cryptosystems on SVP, but: much slower than RSA.

3. In Soliloquy: To improve efficiency, several assumptions were
made.
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1. Assume SVP is hard if L comes from an 1deal I in the ring of integers
in a number field. (L=1deal lattice).

2. Assume: problem still hard if, in addition, I 1s a principal 1deal. I.e.
[ = (o).

3. Same setup as 1n (2.), but assume also that the generator a for I 1s

short. Known as Short generator principal ideal problem (SGPIP).

Several constructions are based on SGPIP: Soliloquiy, multilinear
maps.

There 1s an efficient quantum algorithm for SGPIP.
So: these systems are broken by quantum computers.
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Input: ideal 7 1n a number field
Output: Log a with a short and
[ = ().

1) Compute the unit group
2) Solve the PIP Problem

to get Log f s.t. [ = (p)
3) Solve BDD in the

unit lattice to get Log &
4) Output

Loga =Logf —Loge

The Unit Lattice Log 6*
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Step (1) 1s the following theorem:

Theorem (E-Hallgren-Kitaev-Song): Let K be a
number field (i.e. a finite extension of Q) of
arbitrary degree, and let 0 be its ring of integers.
There 1s a polynomial time quantum algorithm
for computing the unit group 0*.

Unit group 1s too big to write down generators.
‘Computing the unit group’ means writing down
a basis for the lattice Log 0*.
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Traditional elliptic curve cryptography:

- Fix one curve and use the group law.
- Assume discrete log 1s hard on this group.

Shor’s quantum algorithm breaks these.
New proposal:
Use an exponentially large set of elliptic curves and

the 1sogenies (maps) between them.

Elliptic curve: E: y*’=x+ax+b  a,b€F,
® Points are (x,y) satistying above equation and extra point

® Points form an abelian group

® [Have several cryptosystems based on i1sogenies. Only
submission to NIST competition was SIKE-SIDH.
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EXAMPLE: SIDH KEY EXCHANGE
(SUPERSINGULAR ISOGENY DIFFIE-HELLMAN)

BROKEN, SUMMER 2022

E = supersingular elliptic curve defined over Fe.

1. Alice: chooses secret subgroup A of E, sends E/A to Bob.
2. Bob: chooses subgroup B of E and send E/B to Alice.

3. Shared secret: elliptic curve E/(A, B).

E > E/(A)

Alice’s secret: ker(a) = (A)

Bob'secret: ker(f) = (B) 5 Io%

Joint secret: E/{(A, B) E/<B>
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Vulnerability of SIDH: have to reveal evaluation
a(P), a(Q) for certain points P,Q on E. (Same for f.)

Idea for break: Recover ker(a) from ker(f), where fis
an 1sogeny between products of curves.

T ECE — E-XX

Castryck-Decru (July 2022) Maino et al. (August 2022) Robert (August 2022)

Open question:

Are the other cryptographic constructions based on
isogenies still secure ?
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